Dieses Dokument steht unter einer CreativeCommons Lizenz by/4.0
DC ElementWertSprache
dc.contributor.authorSoyarslan, Celal-
dc.contributor.authorTürtük, Ismaíl Cem-
dc.contributor.authorDeliktas, Babur-
dc.contributor.authorBargmann, Swantje-
dc.date.accessioned2019-02-07T07:13:06Z-
dc.date.available2019-02-07T07:13:06Z-
dc.date.issued2016-02-24-
dc.identifier.citationInternational Journal of Applied Mechanics 1 (8): 1650009- (2016-01-01)de_DE
dc.identifier.issn1758-826Xde_DE
dc.identifier.urihttps://tubdok.tub.tuhh.de/handle/11420/2020-
dc.description.abstractWithin a continuum approximation, we present a thermomechanical finite strain plasticity model which incorporates the blended effects of micro-heterogeneities in the form of micro-cracks and micro-voids. The former accounts for cleavage-type of damage without any volume change whereas the latter is a consequence of plastic void growth. Limiting ourselves to isotropy, for cleavage damage a scalar damage variable d ϵ [0, 1] is incorporated. Its conjugate variable, the elastic energy release rate, and evolution law follow the formal steps of thermodynamics of internal variables requiring postulation of an appropriate damage dissipation potential. The growth of void volume fraction f is incorporated using a Gurson-type porous plastic potential postulated at the effective stress space following continuum damage mechanics principles. Since the growth of micro-voids is driven by dislocation motion around voids the dissipative effects corresponding to the void growth are encapsulated in the plastic flow. Thus, the void volume fraction is used as a dependent variable using the conservation of mass. The predictive capability of the model is tested through uniaxial tensile tests at various temperatures ϵ [-125°C, 125°C]. It is shown, via fracture energy plots, that temperature driven ductile-brittle transition in fracture mode is well captured. With an observed ductile-brittle transition temperature around - 50°C, at lower temperatures fracture is brittle dominated by d whereas at higher temperatures it is ductile dominated by f.en
dc.language.isoende_DE
dc.publisherWorld Scientific Publ.de_DE
dc.relation.ispartofInternational journal of applied mechanicsde_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectThermoplasticityde_DE
dc.subjectfinite strainde_DE
dc.subjectvoid growthde_DE
dc.subjectcleavagede_DE
dc.subjectductile–brittle transitionde_DE
dc.subject.ddc600: Technikde_DE
dc.titleA thermomechanically consistent constitutive theory for modeling micro-void and/or micro-crack driven failure in metals at finite strainsde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.026538-
dc.identifier.doi10.15480/882.2017-
dc.type.diniarticle-
dc.subject.ddccode600-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.026538-
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/2020-
tuhh.abstract.englishWithin a continuum approximation, we present a thermomechanical finite strain plasticity model which incorporates the blended effects of micro-heterogeneities in the form of micro-cracks and micro-voids. The former accounts for cleavage-type of damage without any volume change whereas the latter is a consequence of plastic void growth. Limiting ourselves to isotropy, for cleavage damage a scalar damage variable d ϵ [0, 1] is incorporated. Its conjugate variable, the elastic energy release rate, and evolution law follow the formal steps of thermodynamics of internal variables requiring postulation of an appropriate damage dissipation potential. The growth of void volume fraction f is incorporated using a Gurson-type porous plastic potential postulated at the effective stress space following continuum damage mechanics principles. Since the growth of micro-voids is driven by dislocation motion around voids the dissipative effects corresponding to the void growth are encapsulated in the plastic flow. Thus, the void volume fraction is used as a dependent variable using the conservation of mass. The predictive capability of the model is tested through uniaxial tensile tests at various temperatures ϵ [-125°C, 125°C]. It is shown, via fracture energy plots, that temperature driven ductile-brittle transition in fracture mode is well captured. With an observed ductile-brittle transition temperature around - 50°C, at lower temperatures fracture is brittle dominated by d whereas at higher temperatures it is ductile dominated by f.de_DE
tuhh.publisher.doi10.1142/S1758825116500095-
tuhh.publication.instituteKontinuums- und Werkstoffmechanik M-15de_DE
tuhh.identifier.doi10.15480/882.2017-
tuhh.type.opus(wissenschaftlicher) Artikelde
tuhh.institute.germanKontinuums- und Werkstoffmechanik M-15de
tuhh.institute.englishKontinuums- und Werkstoffmechanik M-15de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccbyde_DE
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Articleen
tuhh.container.issue1de_DE
tuhh.container.volume8de_DE
tuhh.container.startpageArt.-Nr. 1650009de_DE
dc.rights.nationallicensefalsede_DE
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.creatorOrcidSoyarslan, Celal-
item.creatorOrcidTürtük, Ismaíl Cem-
item.creatorOrcidDeliktas, Babur-
item.creatorOrcidBargmann, Swantje-
item.creatorGNDSoyarslan, Celal-
item.creatorGNDTürtük, Ismaíl Cem-
item.creatorGNDDeliktas, Babur-
item.creatorGNDBargmann, Swantje-
crisitem.author.orcid0000-0003-1029-237X-
crisitem.author.orcid0000-0001-7403-7066-
Enthalten in den Sammlungen:Publications (tub.dok)
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s1758825116500095.pdfVerlags-PDF544,13 kBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

33
Letzte Woche
12
Letzten Monat
checked on 19.02.2019

Download(s)

3
checked on 19.02.2019

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons