DC FieldValueLanguage
dc.contributor.authorPapangelo, Antonio-
dc.contributor.authorGuarino, R.-
dc.contributor.authorPugno, Nicola M.-
dc.contributor.authorCiavarella, Michele-
dc.date.accessioned2019-03-13T11:51:08Z-
dc.date.available2019-03-13T11:51:08Z-
dc.date.issued2019-02-15-
dc.identifier.citationEngineering Fracture Mechanics (207): 269-276 (2019-02-15)de_DE
dc.identifier.issn0013-7944de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2115-
dc.description.abstract© 2018 Elsevier Ltd The anomalous propagation of short cracks shows generally exponential fatigue crack growth but the dependence on stress range at high stress levels is not compatible with Paris’ law with exponent m=2. Indeed, some authors have shown that the standard uncracked SN curve is obtained mostly from short crack propagation, assuming that the crack size a increases with the number of cycles N as [Formula presented]=HΔσha where h is close to the exponent of the Basquin's power law SN curve. We therefore propose a general equation for crack growth which for short cracks has the latter form, and for long cracks returns to the Paris’ law. We show generalized SN curves, generalized Kitagawa–Takahashi diagrams, and discuss the application to some experimental data. The problem of short cracks remains however controversial, as we discuss with reference to some examples.en
dc.language.isoende_DE
dc.relation.ispartofEngineering fracture mechanicsde_DE
dc.titleOn unified crack propagation lawsde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.027878-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.027878-
tuhh.abstract.english© 2018 Elsevier Ltd The anomalous propagation of short cracks shows generally exponential fatigue crack growth but the dependence on stress range at high stress levels is not compatible with Paris’ law with exponent m=2. Indeed, some authors have shown that the standard uncracked SN curve is obtained mostly from short crack propagation, assuming that the crack size a increases with the number of cycles N as [Formula presented]=HΔσha where h is close to the exponent of the Basquin's power law SN curve. We therefore propose a general equation for crack growth which for short cracks has the latter form, and for long cracks returns to the Paris’ law. We show generalized SN curves, generalized Kitagawa–Takahashi diagrams, and discuss the application to some experimental data. The problem of short cracks remains however controversial, as we discuss with reference to some examples.de_DE
tuhh.publisher.doi10.1016/j.engfracmech.2018.12.023-
tuhh.publication.instituteProduktentwicklung und Konstruktionstechnik M-17de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanProduktentwicklung und Konstruktionstechnik M-17de
tuhh.institute.englishProduktentwicklung und Konstruktionstechnik M-17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume207de_DE
tuhh.container.startpage269de_DE
tuhh.container.endpage276de_DE
item.fulltextNo Fulltext-
item.creatorOrcidPapangelo, Antonio-
item.creatorOrcidGuarino, R.-
item.creatorOrcidPugno, Nicola M.-
item.creatorOrcidCiavarella, Michele-
item.languageiso639-1other-
item.creatorGNDPapangelo, Antonio-
item.creatorGNDGuarino, R.-
item.creatorGNDPugno, Nicola M.-
item.creatorGNDCiavarella, Michele-
item.grantfulltextnone-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.orcid0000-0002-0214-904X-
crisitem.author.orcid0000-0003-2136-2396-
crisitem.author.orcid0000-0001-6271-0081-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

19
Last Week
1
Last month
9
checked on Jun 16, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.