Zitierlink: urn:urn:nbn:de:gbv:830-882.027977 (Link)
Verlagslink DOI: 10.1109/COASE.2018.8560535
Titel: Comparison of two clustering approaches to find demand patterns in semiconductor supply chain planning
Sprache: English
Autor/Autorin: Govindaraju, Pramod 
Achter, Sebastian 
Ponsignon, Thomas 
Ehm, Hans 
Meyer, Matthias 
Erscheinungsdatum: 4-Dez-2018
Quellenangabe: IEEE International Conference on Automation Science and Engineering (2018-August): 148-151 (2018-12-04)
Zeitschrift oder Schriftenreihe: IEEE International Conference on Automation Science and Engineering 
Zusammenfassung (englisch): © 2018 IEEE. Advancements in semiconductor industry have resulted in the need for extracting vital information from vast amount of data. In the operational process of supply chain, understanding customer demand data provides important insights for demand planning. Clustering analysis offers potential to identify latent information from multitudinous customer demand data and supports enhanced decision-making. In this paper, two clustering algorithms to identify customer demand patterns are presented, namely K-means and DBSCAN. The implementation of both algorithms on the prepared data sets is discussed and their performance is compared. The paper outlines the importance of deciphering valuable insights from customer demand data in the betterment of a distributed cognitive process of demand planning.
URI: http://hdl.handle.net/11420/2122
ISBN: 978-153863593-3
ISSN: 2161-8070
Institut: Controlling und Simulation W-1 
Dokumenttyp: InProceedings (Aufsatz / Paper einer Konferenz etc.)
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige


checked on 22.03.2019

Google ScholarTM



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.