Publisher DOI: 10.1111/jace.15899
Title: Feasibility of in situ de‐agglomeration during powder consolidation
Language: English
Authors: Giuntini, Diletta 
Bordia, Rajendra K. 
Olevsky, Eugene A. 
Issue Date: 2018
Source: Journal of the American Ceramic Society 2 (102) (2018)
Journal or Series Name: Journal of the American Ceramic Society 
Abstract (english): Consolidation of nano‐sized powders is a growing area in manufacturing of advanced materials, thanks to the reduced processing times, enhanced mechanical properties and high potential for the introduction of multi‐functionality enabled by such reduced particle sizes. Nanopowders, however, are particularly prone to the agglomeration phenomena, and thus to the formation of hierarchical porous structures. The presence of pores differing up to several orders of magnitude in size leads to undesired differential shrinkage and localized grain growth. In order to avoid such issues, strategies for in situ de‐agglomeration are proposed here. These optimization strategies are based on the development of an analytical model for shrinkage kinetics and mechanical properties of a hierarchical porous structure, containing both small‐size intra‐agglomerate pores and large‐size inter‐agglomerate ones. The modeling approach is an expansion of the continuum theory of sintering to the case of biporous materials presenting nonlinear viscous rheology, as expected for nano‐sized crystalline powders. Considering the nonlinear viscous constitutive behavior of the solid phase also allows assessing the influence of the temperature on the microstructural evolution during processing, due to the dependence of the creep characteristic parameter, strain‐rate sensitivity, on the thermal history. Material structure optimization strategies, aimed at de‐agglomeration or at the design of tailored porous structures, become then possible and are here explored. © 2018 The American Ceramic Society.
URI: http://hdl.handle.net/11420/2168
ISSN: 0002-7820
Institute: Keramische Hochleistungswerkstoffe M-9 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

58
Last Week
1
Last month
6
checked on May 25, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.