Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2156
Publisher DOI: 10.1016/j.apt.2018.12.007
Title: Investigation of an FFT-based solver applied to dynamic flowsheet simulation of agglomeration processes
Language: English
Authors: Skorych, Vasyl 
Dosta, Maksym 
Hartge, Ernst-Ulrich 
Heinrich, Stefan 
Ahrens, Robin 
Le Borne, Sabine  
Keywords: Population balance equation;Fast Fourier transformation;Adaptive cross approximation;Dynamic flowsheet simulation;Continuous agglomeration
Issue Date: Mar-2019
Publisher: Elsevier
Source: Advanced Powder Technology 3 (30): 555-564 (2019-03)
Abstract (english): 
The growth of particles due to agglomeration is often mathematically described by population balance equations. The numerical evaluation of these equations and applying new methods to their solution is an area of increasing interest. In this contribution, a new approach for solving the agglomeration population balance model based on a separable approximation of the agglomeration kernel and a fast Fourier transformation is investigated. Its applicability within a dynamic flowsheet simulation of continuous agglomeration processes with complex structures is analysed. A simulation framework Dyssol is used to study the new method and compare it to the well-known fixed pivot technique. Studies have shown that the new approach can provide a more efficient solution if certain constraints on the number of classes and on the separation rank of the agglomeration kernel are met.
URI: http://hdl.handle.net/11420/2242
DOI: 10.15480/882.2156
ISSN: 0921-8831
Institute: Feststoffverfahrenstechnik und Partikeltechnologie V-3 
Mathematik E-10 
Mehrskalensimulation von Feststoffsystemen V-EXK1 
Document Type: Article
Project: SPP 1679: Dynamische Simulation vernetzter Feststoffprozesse 
License: CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives) CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives)
Journal: Advanced powder technology 
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
1-s2.0-S0921883118306629-main.pdfVerlags-PDF1,74 MBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

302
Last Week
2
Last month
3
checked on Jun 27, 2022

Download(s)

207
checked on Jun 27, 2022

SCOPUSTM   
Citations

6
Last Week
0
Last month
0
checked on Jun 21, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons