Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.222
Fulltext available
DC FieldValueLanguage
dc.contributor.authorMerkel, Maximilian-
dc.contributor.authorGojny, Marcus Heinrich-
dc.contributor.authorCarl, Udo B.-
dc.date.accessioned2006-03-30T12:53:10Zde_DE
dc.date.available2006-03-30T12:53:10Zde_DE
dc.date.issued2002de_DE
dc.identifier.citationDeutscher Luft- und Raumfahrtkongress 2002, Stuttgart, 23.-26. September 2002, DGLR-2002-007de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/224-
dc.description.abstractRegarding the regulation of weakly damped aeroelastic structures by means of the primary flight controls (PFC), the present contribution focusses on a sophisticated robust controller design method, to achieve the required functionality. Generally, the outlined approach is premised on eigenstructure assignment. Enhancements promise effective integration of miscellaneous potentially competing objective specifications either in time or frequency domain as well as parametric requirements. Due to the infinitive set of flight conditions and fuel configurations the underlying aeroservoelastic plant consists of a linear multivariable multi–model system. Technical feasibility, parametric and dynamic uncertainties as well as architectural constraints, e.g. the number of available sensors lead to a robust output feedback controller. Principally the proposed method is well known from flight control design and modal decoupling. But in contrast, the constrained simultaneous robust eigenvalue stabilisation represents the primary objective at the current application. Since the intrinsic controller calculation is implemented as multiobjective optimisation task, proper optimisation criteria are defined, which incorporate the aeroservoelastic performance specifications into the design procedure. The suitability of the resulting low–order static output controller is verified by real time simulation for a completely normal and degraded configuration covering a real PFC actuation system hardware–in–the–<br /> loop.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectFlexible aircraftde_DE
dc.subjectaeroservoelasticityde_DE
dc.subjectstructural vibrationsde_DE
dc.subjectflutter marginde_DE
dc.subjectdamping augmentationde_DE
dc.subjectrobust controller designde_DE
dc.titleEnhanced eigenstructure assignment for aeroelastic control applicationde_DE
dc.typeinProceedingsde_DE
dc.date.updated2006-03-30T12:53:11Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2870de_DE
dc.identifier.doi10.15480/882.222-
dc.type.dinicontributionToPeriodical-
dc.subject.bcl55.50:Luftfahrzeugtechnikde
dc.subject.gndFlugzeugbaude
dc.subject.gndLuftfahrttechnikde
dc.subject.bclcode55.50-
dc.subject.ddccode620-
dcterms.DCMITypeTextde_DE
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2870de_DE
tuhh.publikation.typconferenceObjectde_DE
tuhh.publikation.sourceDeutscher Luft- und Raumfahrtkongress 2002, Stuttgart, 23.-26. September 2002, DGLR-2002-007de_DE
tuhh.opus.id287de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/224-
tuhh.abstract.englishRegarding the regulation of weakly damped aeroelastic structures by means of the primary flight controls (PFC), the present contribution focusses on a sophisticated robust controller design method, to achieve the required functionality. Generally, the outlined approach is premised on eigenstructure assignment. Enhancements promise effective integration of miscellaneous potentially competing objective specifications either in time or frequency domain as well as parametric requirements. Due to the infinitive set of flight conditions and fuel configurations the underlying aeroservoelastic plant consists of a linear multivariable multi–model system. Technical feasibility, parametric and dynamic uncertainties as well as architectural constraints, e.g. the number of available sensors lead to a robust output feedback controller. Principally the proposed method is well known from flight control design and modal decoupling. But in contrast, the constrained simultaneous robust eigenvalue stabilisation represents the primary objective at the current application. Since the intrinsic controller calculation is implemented as multiobjective optimisation task, proper optimisation criteria are defined, which incorporate the aeroservoelastic performance specifications into the design procedure. The suitability of the resulting low–order static output controller is verified by real time simulation for a completely normal and degraded configuration covering a real PFC actuation system hardware–in–the–<br /> loop.de_DE
tuhh.publication.instituteFlugzeug-Systemtechnik M-7de_DE
tuhh.identifier.doi10.15480/882.222-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)de
tuhh.institute.germanFlugzeug-Systemtechnik M-7de
tuhh.institute.englishAircraft Systems Engineering M-7en
tuhh.institute.id20de_DE
tuhh.type.id16de_DE
tuhh.gvk.hasppnfalse-
dc.type.drivercontributionToPeriodical-
dc.identifier.oclc930768037-
dc.type.casraiConference Paperen
item.fulltextWith Fulltext-
item.creatorOrcidMerkel, Maximilian-
item.creatorOrcidGojny, Marcus Heinrich-
item.creatorOrcidCarl, Udo B.-
item.grantfulltextopen-
item.languageiso639-1other-
item.creatorGNDMerkel, Maximilian-
item.creatorGNDGojny, Marcus Heinrich-
item.creatorGNDCarl, Udo B.-
crisitem.author.deptFlugzeug-Systemtechnik M-7-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
208_16.pdf618,11 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

344
Last Week
2
Last month
5
checked on Jun 25, 2019

Download(s)

173
checked on Jun 25, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.