DC FieldValueLanguage
dc.contributor.authorDahl, David-
dc.contributor.authorFrick, Eduard-
dc.contributor.authorSeifert, Christian-
dc.contributor.authorLindner, Marko-
dc.contributor.authorSchuster, Christian-
dc.date.accessioned2019-04-23T09:14:52Z-
dc.date.available2019-04-23T09:14:52Z-
dc.date.issued2019-
dc.identifier.citationIEEE Journal on Multiscale and Multiphysics Computational Techniques (4): 88-97 (2019)de_DE
dc.identifier.issn2379-8793de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2370-
dc.description.abstractThis paper presents a multiscale method for the numerically efficient electromagnetic analysis of two-dimensional (2-D) photonic and electromagnetic crystals. It is based on a contour integral method and a segmented analysis of more complex structures in terms of building blocks which are models for essential components. The scattering properties of essential photonic crystal components, such as waveguide sections, bends, and junctions, can be expressed independent of the electromagnetic wave launch parts which are used for the excitation by de-embedding of the network parameters. To enable this, the launch properties are extracted by a calibration technique using several calibration standards analog to a measurement. The de-embedding can be applied both to the proposed integral method and to the reference results from other full-wave methods. The extracted scattering parameters of the components can be used in a multiscale analysis for the efficient simulation of very large 2-D photonic and microwave structures with circular inclusions as the concatenation is performed only in terms of the network parameters. The proposed approach is about one to two orders of magnitude faster than the conventional unsegmented analysis with the contour integral method and several orders of magnitude faster than the full-wave reference method. © 2016 IEEE.en
dc.relation.ispartofIEEE journal on multiscale and multiphysics computational techniquesde_DE
dc.titleMultiscale Simulation of 2-D Photonic Crystal Structures Using a Contour Integral Methodde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishThis paper presents a multiscale method for the numerically efficient electromagnetic analysis of two-dimensional (2-D) photonic and electromagnetic crystals. It is based on a contour integral method and a segmented analysis of more complex structures in terms of building blocks which are models for essential components. The scattering properties of essential photonic crystal components, such as waveguide sections, bends, and junctions, can be expressed independent of the electromagnetic wave launch parts which are used for the excitation by de-embedding of the network parameters. To enable this, the launch properties are extracted by a calibration technique using several calibration standards analog to a measurement. The de-embedding can be applied both to the proposed integral method and to the reference results from other full-wave methods. The extracted scattering parameters of the components can be used in a multiscale analysis for the efficient simulation of very large 2-D photonic and microwave structures with circular inclusions as the concatenation is performed only in terms of the network parameters. The proposed approach is about one to two orders of magnitude faster than the conventional unsegmented analysis with the contour integral method and several orders of magnitude faster than the full-wave reference method. © 2016 IEEE.de_DE
tuhh.publisher.doi10.1109/JMMCT.2019.2904195-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.publication.instituteTheoretische Elektrotechnik E-18de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanTheoretische Elektrotechnik E-18de
tuhh.institute.englishTheoretische Elektrotechnik E-18de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume4de_DE
tuhh.container.startpage88de_DE
tuhh.container.endpage97de_DE
dc.identifier.scopus2-s2.0-85063996395-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.creatorOrcidDahl, David-
item.creatorOrcidFrick, Eduard-
item.creatorOrcidSeifert, Christian-
item.creatorOrcidLindner, Marko-
item.creatorOrcidSchuster, Christian-
item.creatorGNDDahl, David-
item.creatorGNDFrick, Eduard-
item.creatorGNDSeifert, Christian-
item.creatorGNDLindner, Marko-
item.creatorGNDSchuster, Christian-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.mappedtypeArticle-
crisitem.author.deptTheoretische Elektrotechnik E-18-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.deptTheoretische Elektrotechnik E-18-
crisitem.author.orcid0000-0002-4242-6785-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.orcid0000-0001-8483-2944-
crisitem.author.orcid0000-0003-4019-0788-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

361
Last Week
1
Last month
7
checked on Dec 7, 2022

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.