Publisher DOI: 10.1002/bit.26828
Title: Model-based identification of cell-cycle-dependent metabolism and putative autocrine effects in antibody producing CHO cell culture
Language: English
Authors: Möller, Johannes 
Korte, Katrin 
Pörtner, Ralf 
Zeng, An-Ping 
Jandt, Uwe 
Keywords: cell heterogeneity;population resolved modeling;synchronization
Issue Date: Dec-2018
Source: Biotechnology and bioengineering 12 (115): 2996-3008 (2018-12)
Journal or Series Name: Biotechnology and Bioengineering 
Abstract (english): The understanding of cell-cycle-dependent population heterogeneities in mammalian cell culture and their influence on production rates is still limited. Furthermore, metabolic regulations arising from self-expressed signaling factors (autocrine/autoinhibitory factors) have been postulated in the past, but no determination of such effects have been made so far for fast-growing production Chinese hamster ovary (CHO) cells in chemically defined media. In this study, a novel approach combining near-physiological treatment of cells (including synchronization), population resolved mechanistic modeling and statistical analysis was developed to identify population inhomogeneities. Cell-cycle-dependent population dynamics and metabolic regulations due to a putative autocrine factor were examined and their impact on the metabolic rates and antibody production of near-physiologically synchronized CHO DP-12 cell cultures was determined. To achieve this, a population resolved model was extended to describe putative autocrine-dependentt and cell-cycle-related metabolic rates for glucose, glutamine, lactate, ammonia, and antibody production. The model parameters were estimated based on data of two repeated batch cultivations (three batches each), with main substrates in excess and potentially inhibiting waste products (lactate and ammonium) controlled within narrow ranges. Significant changes, due to a putative autocrine factor, were identified for lactate and ammonia formation and antibody production. The cell growth and the uptake of glucose and glutamine were only partially affected by the putative autocrine under the given conditions. The results indicate the presence of a self-expressed autocrine factor and its strong impact on the metabolism of CHO DP-12 cells. Furthermore, glucose and glutamine uptake, as well as the formation of ammonium and antibody were found to be significantly cell-cycle-dependent. The combined approach has a strong potential to improve the understanding of the interplay of population heterogeneities and signal factors in mammalian cell culture.
URI: http://hdl.handle.net/11420/2396
ISSN: 0006-3592
Institute: Bioprozess- und Biosystemtechnik V-1 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

13
Last Week
1
Last month
checked on May 24, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.