DC FieldValueLanguage
dc.contributor.authorWang, Youjiang-
dc.contributor.authorAbdel-Maksoud, Moustafa-
dc.contributor.authorSong, Baowei-
dc.date.accessioned2019-05-06T13:03:08Z-
dc.date.available2019-05-06T13:03:08Z-
dc.date.issued2018-05-30-
dc.identifier.citationComputers and Fluids (168): 73-86 (2018-05-30)de_DE
dc.identifier.issn0045-7930de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2625-
dc.description.abstractThis work presents a hybrid method combining the low order boundary element method and the vortex particle method, in the sense that inviscid wake panels are shed from the trailing edge and then converted to vortex particles for viscous simulation of the slipstream flow. The way to combine these two solution techniques are described in detail as well as the methodology to convert wake panels to vortex particles. Two elliptical hydrofoils in the steady flow and an oscillating rectangular hydrofoil are investigated with the hybrid method. It is demonstrated that, to obtain a physical vorticity distribution, the inter-particle spacing cannot be chose arbitrarily, but should be correlated to the boundary layer thickness. The hybrid method shows a good capability to conserve the axial vorticity. The obtained tangential velocity profile across the tip vortex also exhibits an acceptable correlation with experimental measurement. Also presented are the obtained hydrodynamic forces, their convergence with regards to panel size and time step, and the comparison with results of RANS solver and boundary element method.en
dc.language.isoende_DE
dc.relation.ispartofComputers & fluidsde_DE
dc.titleA boundary element-vortex particle hybrid method with inviscid shedding schemede_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.034382-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.034382-
tuhh.abstract.englishThis work presents a hybrid method combining the low order boundary element method and the vortex particle method, in the sense that inviscid wake panels are shed from the trailing edge and then converted to vortex particles for viscous simulation of the slipstream flow. The way to combine these two solution techniques are described in detail as well as the methodology to convert wake panels to vortex particles. Two elliptical hydrofoils in the steady flow and an oscillating rectangular hydrofoil are investigated with the hybrid method. It is demonstrated that, to obtain a physical vorticity distribution, the inter-particle spacing cannot be chose arbitrarily, but should be correlated to the boundary layer thickness. The hybrid method shows a good capability to conserve the axial vorticity. The obtained tangential velocity profile across the tip vortex also exhibits an acceptable correlation with experimental measurement. Also presented are the obtained hydrodynamic forces, their convergence with regards to panel size and time step, and the comparison with results of RANS solver and boundary element method.de_DE
tuhh.publisher.doi10.1016/j.compfluid.2018.03.062-
tuhh.publication.instituteFluiddynamik und Schiffstheorie M-8de_DE
tuhh.type.opus(wissenschaftlicher) Artikelde
tuhh.institute.germanFluiddynamik und Schiffstheorie M-8de
tuhh.institute.englishFluiddynamik und Schiffstheorie M-8de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Articleen
tuhh.container.volume168de_DE
tuhh.container.startpage73de_DE
tuhh.container.endpage86de_DE
item.fulltextNo Fulltext-
item.creatorOrcidWang, Youjiang-
item.creatorOrcidAbdel-Maksoud, Moustafa-
item.creatorOrcidSong, Baowei-
item.languageiso639-1other-
item.creatorGNDWang, Youjiang-
item.creatorGNDAbdel-Maksoud, Moustafa-
item.creatorGNDSong, Baowei-
item.grantfulltextnone-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.orcid0000-0002-4830-325X-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

9
Last Week
2
Last month
checked on Jun 16, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.