Publisher DOI: 10.1021/acs.jpcc.5b07457
Title: Hexane Cracking on ZSM-5 and Faujasite Zeolites: A QM/MM/QCT Study
Language: English
Authors: Tranca, D. C. 
Zimmerman, P. M. 
Gomes, J. 
Lambrecht, D. 
Keil, Frerich 
Head-Gordon, M. 
Bell, A. T. 
Issue Date: 31-Dec-2015
Source: Journal of Physical Chemistry C 52 (119): 28836-28853 (2015-12-31)
Journal or Series Name: The Journal of Physical Chemistry C 
Abstract (english): Quantum mechanics/molecular mechanics (QM/MM) models are applied to investigate the adsorption and cracking of n-hexane on ZSM-5 and Faujasite zeolite structures. These simulations account for the long-range electrostatic and midrange van-der-Waals interactions in the zeolite and provide energy barriers that are close to experimental data. The active acidic site was modeled by dispersion corrected density functional theory (DFT, ω B97X-D6-311/G∗). The long-range interactions were calculated by molecular mechanics (MM). The adsorbed molecules under investigation are characterized by their thermodynamic properties (adsorption energy and enthalpy). The influence of the zeolite type on the thermodynamic properties is also pointed out. The results reveal that the kinetics of cracking is insensitive to differences in acid strengths. The thermodynamic data obtained are mainly influenced by the adsorption energy of n-hexane on ZSM-5 and/or Faujasite (Y) structures. The pore sizes of the zeolite types can lead to a stronger or weaker adsorption energy. Except for the thermodynamic property investigations in this article, the quasi-classical trajectory method (QCT) is used for investigating the pathways along metastable intermediates toward various cracking products. Not only the reaction barriers but also the reaction dynamics determine the reaction selectivity.
URI: http://hdl.handle.net/11420/2780
ISSN: 1932-7447
Institute: Chemische Reaktionstechnik V-2 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

24
Last Week
0
Last month
3
checked on Aug 20, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.