Publisher DOI: | 10.1002/jgt.22248 | Title: | On minimum bisection and related cut problems in trees and tree-like graphs | Language: | English | Authors: | Fernandes, Cristina G. Schmidt, Tina Janne Taraz, Anusch |
Issue Date: | Oct-2018 | Source: | Journal of Graph Theory 2 (89): 214-245 (2018-10) | Abstract (english): | Minimum bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. It is intuitively clear that graphs with a somewhat linear structure are easy to bisect, and therefore our aim is to relate the minimum bisection width of a bounded-degree graph G to a parameter that measures the similarity between G and a path. First, for trees, we use the diameter and show that the minimum bisection width of every tree T on n vertices satisfies MinBis (T)≤8nΔ(T)/ diam (T). Second, we generalize this to arbitrary graphs with a given tree decomposition (T,X) and give an upper bound on the minimum bisection width that depends on how close (T,X) is to a path decomposition. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input. |
URI: | http://hdl.handle.net/11420/2827 | ISSN: | 0364-9024 | Journal: | Journal of graph theory | Institute: | Mathematik E-10 | Document Type: | Article |
Appears in Collections: | Publications without fulltext |
Show full item record
Page view(s)
124
Last Week
1
1
Last month
1
1
checked on Jul 5, 2022
SCOPUSTM
Citations
1
Last Week
0
0
Last month
0
0
checked on Jun 30, 2022
Google ScholarTM
Check
Add Files to Item
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.