Publisher DOI: 10.1007/s12008-017-0434-8
Title: Similarity and numerical analysis of the generalized Levèque problem to predict the thermal boundary layer
Language: English
Authors: Belhocine, Ali 
Abdullah, Oday Ibraheem 
Issue Date: Aug-2018
Source: International Journal on Interactive Design and Manufacturing 3 (12): 1015-1025 (2018-08-01)
Journal or Series Name: International journal on interactive design and manufacturing 
Abstract (english): In the thermal entrance region, a thermal boundary layer develops and also reaches the circular tube center. The fully developed region is the zone in which the flow is both hydrodynamically and thermally developed. The heat flux will be higher near the inlet because the heat transfer coefficient is highest at the tube inlet where the thickness of the thermal boundary layer is zero, and decreases gradually to the fully developed value. In this paper, the assumptions implicit in Leveque’s approximation are re-examined, and the analytical solution of the problem with additional boundary conditions, for the temperature field and the boundary layer thickness through the long tube is presented. From the mathematical side, numerical techniques for solving the problem of fluid–structure interaction with a fully developed laminar incompressible Newtonian flow is described. By defining a similarity variable the governing equations are reduced to a dimensionless equation with an analytic solution in the entrance region. This report gives justification for the similarity variable via scaling analysis, details the process of converting to a similarity form, and presents a similarity solution. The analytical solutions are then checked against numerical solution programming by FORTRAN code obtained via using Runge–Kutta fourth order (RK4) method. Finally, others important thermal results obtained from this analysis, such as; approximate Nusselt number in the thermal entrance region was discussed in detail.
URI: http://hdl.handle.net/11420/2879
ISSN: 1955-2513
Institute: Laser- und Anlagensystemtechnik G-2 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

106
Last Week
0
Last month
2
checked on Sep 25, 2020

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.