Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2364
DC FieldValueLanguage
dc.contributor.authorDosta, Maksym-
dc.contributor.authorJarolin, Kolja-
dc.contributor.authorGurikov, Pavel-
dc.date.accessioned2019-08-06T13:51:28Z-
dc.date.available2019-08-06T13:51:28Z-
dc.date.issued2019-07-12-
dc.identifierdoi: 10.3390/molecules24142543-
dc.identifier.citationMolecules 24 (14): 2543 (2019)de_DE
dc.identifier.issn1420-3049de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3059-
dc.description.abstractA novel mesoscale modelling approach for the investigation of mechanical properties of alginate aerogels is proposed. This method is based on the discrete element method and bonded-particle model. The nanostructure of aerogel is not directly considered, instead the highly porous structure of aerogels is represented on the mesoscale as a set of solid particles connected by solid bonds. To describe the rheological material behavior, a new elastic-plastic functional model for the solids bonds has been developed. This model has been derived based on the self-similarity principle for the material behavior on the macro and mesoscales. To analyze the effectiveness of the proposed method, the behavior of alginate aerogels with different crosslinking degrees (calcium content) was analyzed. The comparison between experimental and numerical results has shown that the proposed approach can be effectively used to predict the mechanical behavior of aerogels on the macroscale.-
dc.description.abstractA novel mesoscale modelling approach for the investigation of mechanical properties of alginate aerogels is proposed. This method is based on the discrete element method and bonded-particle model. The nanostructure of aerogel is not directly considered, instead the highly porous structure of aerogels is represented on the mesoscale as a set of solid particles connected by solid bonds. To describe the rheological material behavior, a new elastic-plastic functional model for the solids bonds has been developed. This model has been derived based on the self-similarity principle for the material behavior on the macro and mesoscales. To analyze the effectiveness of the proposed method, the behavior of alginate aerogels with different crosslinking degrees (calcium content) was analyzed. The comparison between experimental and numerical results has shown that the proposed approach can be effectively used to predict the mechanical behavior of aerogels on the macroscale.en
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofMoleculesde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectmechanical behaviorde_DE
dc.subjectplastic deformationde_DE
dc.subjectaerogelsde_DE
dc.subjectdiscrete element methodde_DE
dc.subjectbonded-particle modelde_DE
dc.subject.ddc540: Chemiede_DE
dc.titleModelling of mechanical behavior of biopolymer alginate aerogels using the bonded-particle modelde_DE
dc.typeArticlede_DE
dc.date.updated2019-07-25T16:57:56Z-
dc.identifier.urnurn:nbn:de:gbv:830-882.044855-
dc.identifier.doi10.15480/882.2364-
dc.type.diniarticle-
dc.subject.ddccode540-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.044855-
tuhh.oai.showtruede_DE
tuhh.abstract.englishA novel mesoscale modelling approach for the investigation of mechanical properties of alginate aerogels is proposed. This method is based on the discrete element method and bonded-particle model. The nanostructure of aerogel is not directly considered, instead the highly porous structure of aerogels is represented on the mesoscale as a set of solid particles connected by solid bonds. To describe the rheological material behavior, a new elastic-plastic functional model for the solids bonds has been developed. This model has been derived based on the self-similarity principle for the material behavior on the macro and mesoscales. To analyze the effectiveness of the proposed method, the behavior of alginate aerogels with different crosslinking degrees (calcium content) was analyzed. The comparison between experimental and numerical results has shown that the proposed approach can be effectively used to predict the mechanical behavior of aerogels on the macroscale.de_DE
tuhh.publisher.doi10.3390/molecules24142543-
tuhh.publication.instituteFeststoffverfahrenstechnik und Partikeltechnologie V-3de_DE
tuhh.publication.instituteThermische Verfahrenstechnik V-8de_DE
tuhh.identifier.doi10.15480/882.2364-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanThermische Verfahrenstechnik V-8de
tuhh.institute.englishThermische Verfahrenstechnik V-8de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.issue14de_DE
tuhh.container.volume24de_DE
tuhh.container.startpageArt.-Nr. 2543de_DE
dc.rights.nationallicensefalsede_DE
item.creatorGNDDosta, Maksym-
item.creatorGNDJarolin, Kolja-
item.creatorGNDGurikov, Pavel-
item.fulltextWith Fulltext-
item.languageiso639-1other-
item.creatorOrcidDosta, Maksym-
item.creatorOrcidJarolin, Kolja-
item.creatorOrcidGurikov, Pavel-
item.grantfulltextopen-
crisitem.author.deptFeststoffverfahrenstechnik und Partikeltechnologie V-3-
crisitem.author.deptFeststoffverfahrenstechnik und Partikeltechnologie V-3-
crisitem.author.deptEntwicklung und Modellierung neuartiger nanoporöser Materialien V-EXK2-
crisitem.author.orcid0000-0002-7578-8408-
crisitem.author.orcid0000-0001-5011-4653-
crisitem.author.orcid0000-0003-0598-243X-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
molecules-24-02543.pdf27,83 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

50
Last Week
12
Last month
checked on Aug 19, 2019

Download(s)

10
checked on Aug 19, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons