Publisher DOI: 10.1109/ICL-GNSS.2016.7533833
Title: Selection of relevant particles in nonparametric distributed message passing for cooperative localization
Language: English
Authors: Mendrzik, Rico 
Lewandowsky, Jan 
Bauch, Gerhard 
Issue Date: 4-Aug-2016
Source: International Conference on Localization and GNSS : 7533833 (2016-08-04)
Abstract (english): Distributed nonparametric belief propagation can be employed for cooperative localization. Its natural asset of providing a measure of uncertainty of position estimates makes distributed nonparametric belief propagation a powerful localization technique. However, distributed nonparametric belief propagation requires the exchange of arbitrarily complex messages over communication-constrained links. To cope with these communication constraints, parametric approximations (e.g. Gaussian mixtures) of these messages have evolved to become the de facto standard. These message approximations suffer from a limited representational power for highly nonstandard distributions, which results in limited localization accuracy. We propose two novel particle-based message approximations that select important particles according to mutual information shared with a relevant random variable. The first approach is based on the Information Bottleneck algorithm, while the second scheme is based on partial mutual information. We compare both particle-based methods through simulations, demonstrating an improvement over the parametrized approach in terms of localization error with only moderate increase in communications.
URI: http://hdl.handle.net/11420/3245
ISBN: 978-150901757-7
Institute: Nachrichtentechnik E-8 
Type: InProceedings (Aufsatz / Paper einer Konferenz etc.)
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

58
Last Week
0
Last month
0
checked on Sep 27, 2020

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.