DC FieldValueLanguage
dc.contributor.authorJanßen, Christian Friedrich-
dc.contributor.authorGrilli, Stephan T.-
dc.contributor.authorKrafczyk, Manfred-
dc.date.accessioned2019-09-06T08:50:40Z-
dc.date.available2019-09-06T08:50:40Z-
dc.date.issued2012-07-02-
dc.identifier.citationComputers and Mathematics with Applications 2 (65): 211-229 (2013-01-01)de_DE
dc.identifier.issn0898-1221de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3322-
dc.description.abstractIn this paper, we present extensions, extensive validations and applications of our previously published hybrid volume-of-fluid-based (VOF) model for the simulation of free-surface flow problems. For the solution of the flow field, the lattice Boltzmann method is used, where the free surface is represented by a VOF approach. The advection equation for the VOF fill level is discretized with a finite volume method, on the basis of a 3D Piecewise Linear Interface Reconstruction (PLIC) algorithm. The model is validated for several standard free surface benchmarks, such as breaking dam scenarios and a free falling jet. Finally, the hybrid algorithm is applied to the simulation of a wave breaking by overturning during shoaling, which is considered to be a demanding test case, especially for VOF solvers. In this case, the flow field is initialized early in the shoaling process with a solitary wave solution from inviscid, irrotational potential flow. The wave breaking process is then simulated with the 3D transient and turbulent LBM-VOF solver. All validation and benchmark tests confirm the accuracy of the proposed hybrid model. © 2013 Published by Elsevier Ltd.en
dc.language.isoende_DE
dc.publisherElsevier Sciencede_DE
dc.relation.ispartofComputers and mathematics with applicationsde_DE
dc.subjectFree surfacede_DE
dc.subjectLattice Boltzmann methodde_DE
dc.subjectPLICde_DE
dc.subjectPlunging breakerde_DE
dc.subjectPotential flowde_DE
dc.subjectVolume of fluidde_DE
dc.subject.ddc530: Physikde_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleOn enhanced non-linear free surface flow simulations with a hybrid LBM-VOF modelde_DE
dc.typeinProceedingsde_DE
dc.type.dinicontributionToPeriodical-
dc.subject.ddccode530-
dc.subject.ddccode600-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.abstract.englishIn this paper, we present extensions, extensive validations and applications of our previously published hybrid volume-of-fluid-based (VOF) model for the simulation of free-surface flow problems. For the solution of the flow field, the lattice Boltzmann method is used, where the free surface is represented by a VOF approach. The advection equation for the VOF fill level is discretized with a finite volume method, on the basis of a 3D Piecewise Linear Interface Reconstruction (PLIC) algorithm. The model is validated for several standard free surface benchmarks, such as breaking dam scenarios and a free falling jet. Finally, the hybrid algorithm is applied to the simulation of a wave breaking by overturning during shoaling, which is considered to be a demanding test case, especially for VOF solvers. In this case, the flow field is initialized early in the shoaling process with a solitary wave solution from inviscid, irrotational potential flow. The wave breaking process is then simulated with the 3D transient and turbulent LBM-VOF solver. All validation and benchmark tests confirm the accuracy of the proposed hybrid model. © 2013 Published by Elsevier Ltd.de_DE
tuhh.publisher.doi10.1016/j.camwa.2012.05.012-
tuhh.publication.instituteFluiddynamik und Schiffstheorie M-8de_DE
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
tuhh.institute.germanFluiddynamik und Schiffstheorie M-8de
tuhh.institute.englishFluiddynamik und Schiffstheorie M-8de_DE
tuhh.gvk.hasppnfalse-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.issue2de_DE
tuhh.container.volume65de_DE
tuhh.container.startpage211de_DE
tuhh.container.endpage229de_DE
dc.relation.conferenceICMMES-2010, Edmonton, Canadade_DE
dc.identifier.scopus2-s2.0-84872114734-
datacite.resourceTypeConference Paper-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeinProceedings-
item.creatorOrcidJanßen, Christian Friedrich-
item.creatorOrcidGrilli, Stephan T.-
item.creatorOrcidKrafczyk, Manfred-
item.languageiso639-1en-
item.creatorGNDJanßen, Christian Friedrich-
item.creatorGNDGrilli, Stephan T.-
item.creatorGNDKrafczyk, Manfred-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.mappedtypeinProceedings-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.orcid0000-0003-1462-2778-
crisitem.author.orcid0000-0002-8509-0871-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

99
Last Week
1
Last month
3
checked on Dec 6, 2022

SCOPUSTM   
Citations

40
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.