Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2400
DC FieldValueLanguage
dc.contributor.authorHensel, Andreas-
dc.contributor.authorSchröter, Clemens Jasper-
dc.contributor.authorSchlicke, Hendrik-
dc.contributor.authorSchulz, Norbert-
dc.contributor.authorRiekeberg, Svenja-
dc.contributor.authorTrieu, Hoc Khiem-
dc.contributor.authorStierle, Andreas-
dc.contributor.authorNoei, Heshmat-
dc.contributor.authorWeller, Horst-
dc.contributor.authorVossmeyer, Tobias-
dc.date.accessioned2019-09-10T09:05:52Z-
dc.date.available2019-09-10T09:05:52Z-
dc.date.issued2019-08-29-
dc.identifierdoi: 10.3390/nano9091230-
dc.identifier.citationNanomaterials 9 (9): 1230 (2019)de_DE
dc.identifier.issn2079-4991de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3340-
dc.description.abstractIn order to enable advanced technological applications of nanocrystal composites, e.g., as functional coatings and layers in flexible optics and electronics, it is necessary to understand and control their mechanical properties. The objective of this study was to show how the elasticity of such composites depends on the nanocrystals’ dimensionality. To this end, thin films of titania nanodots (TNDs; diameter: ~3–7 nm), nanorods (TNRs; diameter: ~3.4 nm; length: ~29 nm), and nanoplates (TNPs; thickness: ~6 nm; edge length: ~34 nm) were assembled via layer-by-layer spin-coating. 1,12-dodecanedioic acid (12DAC) was added to cross-link the nanocrystals and to enable regular film deposition. The optical attenuation coefficients of the films were determined by ultraviolet/visible (UV/vis) absorbance measurements, revealing much lower values than those known for titania films prepared via chemical vapor deposition (CVD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed a homogeneous coverage of the substrates on the µm-scale but a highly disordered arrangement of nanocrystals on the nm-scale. X-ray photoelectron spectroscopy (XPS) analyses confirmed the presence of the 12DAC cross-linker after film fabrication. After transferring the films onto silicon substrates featuring circular apertures (diameter: 32–111 µm), freestanding membranes (thickness: 20–42 nm) were obtained and subjected to atomic force microscopy bulge tests (AFM-bulge tests). These measurements revealed increasing elastic moduli with increasing dimensionality of the nanocrystals, i.e., 2.57 ± 0.18 GPa for the TND films, 5.22 ± 0.39 GPa for the TNR films, and 7.21 ± 1.04 GPa for the TNP films.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofNanomaterialsde_DE
dc.rightsCC BY 4.0de_DE
dc.subjectcomposite filmde_DE
dc.subjectbulge testde_DE
dc.subjectAFMde_DE
dc.subjecttitaniade_DE
dc.subjectnanoparticlede_DE
dc.subjectlayer-by-layerde_DE
dc.subjectattenuation coefficientde_DE
dc.subjectelastic modulusde_DE
dc.subjectYoung’s modulusde_DE
dc.subjectXPSde_DE
dc.subject.ddc530: Physikde_DE
dc.subject.ddc540: Chemiede_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleElasticity of cross-linked titania nanocrystal assemblies probed by AFM-bulge testsde_DE
dc.typeArticlede_DE
dc.date.updated2019-09-06T10:07:00Z-
dc.identifier.urnurn:nbn:de:gbv:830-882.048237-
dc.identifier.doi10.15480/882.2400-
dc.type.diniarticle-
dc.subject.ddccode620-
dc.subject.ddccode530-
dc.subject.ddccode540-
dc.subject.ddccode600-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.048237-
tuhh.oai.showtruede_DE
tuhh.abstract.englishIn order to enable advanced technological applications of nanocrystal composites, e.g., as functional coatings and layers in flexible optics and electronics, it is necessary to understand and control their mechanical properties. The objective of this study was to show how the elasticity of such composites depends on the nanocrystals’ dimensionality. To this end, thin films of titania nanodots (TNDs; diameter: ~3–7 nm), nanorods (TNRs; diameter: ~3.4 nm; length: ~29 nm), and nanoplates (TNPs; thickness: ~6 nm; edge length: ~34 nm) were assembled via layer-by-layer spin-coating. 1,12-dodecanedioic acid (12DAC) was added to cross-link the nanocrystals and to enable regular film deposition. The optical attenuation coefficients of the films were determined by ultraviolet/visible (UV/vis) absorbance measurements, revealing much lower values than those known for titania films prepared via chemical vapor deposition (CVD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed a homogeneous coverage of the substrates on the µm-scale but a highly disordered arrangement of nanocrystals on the nm-scale. X-ray photoelectron spectroscopy (XPS) analyses confirmed the presence of the 12DAC cross-linker after film fabrication. After transferring the films onto silicon substrates featuring circular apertures (diameter: 32–111 µm), freestanding membranes (thickness: 20–42 nm) were obtained and subjected to atomic force microscopy bulge tests (AFM-bulge tests). These measurements revealed increasing elastic moduli with increasing dimensionality of the nanocrystals, i.e., 2.57 ± 0.18 GPa for the TND films, 5.22 ± 0.39 GPa for the TNR films, and 7.21 ± 1.04 GPa for the TNP films.de_DE
tuhh.publisher.doi10.3390/nano9091230-
tuhh.publication.instituteMikrosystemtechnik E-7de_DE
tuhh.identifier.doi10.15480/882.2400-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMikrosystemtechnik E-7de
tuhh.institute.englishMikrosystemtechnik E-7de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.issue9de_DE
tuhh.container.volume9de_DE
dc.relation.projectSFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3de_DE
dc.rights.nationallicensefalsede_DE
tuhh.container.articlenumber1230de_DE
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.creatorOrcidHensel, Andreas-
item.creatorOrcidSchröter, Clemens Jasper-
item.creatorOrcidSchlicke, Hendrik-
item.creatorOrcidSchulz, Norbert-
item.creatorOrcidRiekeberg, Svenja-
item.creatorOrcidTrieu, Hoc Khiem-
item.creatorOrcidStierle, Andreas-
item.creatorOrcidNoei, Heshmat-
item.creatorOrcidWeller, Horst-
item.creatorOrcidVossmeyer, Tobias-
item.languageiso639-1en-
item.creatorGNDHensel, Andreas-
item.creatorGNDSchröter, Clemens Jasper-
item.creatorGNDSchlicke, Hendrik-
item.creatorGNDSchulz, Norbert-
item.creatorGNDRiekeberg, Svenja-
item.creatorGNDTrieu, Hoc Khiem-
item.creatorGNDStierle, Andreas-
item.creatorGNDNoei, Heshmat-
item.creatorGNDWeller, Horst-
item.creatorGNDVossmeyer, Tobias-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.deptMikrosystemtechnik E-7-
crisitem.author.deptMikrosystemtechnik E-7-
crisitem.author.deptMikrosystemtechnik E-7-
crisitem.author.orcid0000-0001-9201-6883-
crisitem.author.orcid0000-0002-6977-4042-
crisitem.author.orcid0000-0002-0303-6282-
crisitem.author.orcid0000-0003-1294-3527-
crisitem.author.orcid0000-0003-2967-6955-
crisitem.author.orcid0000-0001-9738-3826-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext (tub.dok)
Files in This Item:
File Description SizeFormat
nanomaterials-09-01230-v2.pdf5,26 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

143
Last Week
3
Last month
52
checked on Nov 21, 2019

Download(s)

55
checked on Nov 21, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons