Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2528
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorRingwelski, Martin-
dc.contributor.authorTimm-Giel, Andreas-
dc.contributor.authorTurau, Volker-
dc.date.accessioned2019-09-23T15:40:56Z-
dc.date.available2019-09-23T15:40:56Z-
dc.date.issued2014-
dc.identifier.citationOpenAccess Series in Informatics (36) : 38-48 (2014)de_DE
dc.identifier.isbn978-3-939897-66-8de_DE
dc.identifier.issn2190-6807de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3404-
dc.description.abstractWireless sensors have been studied over recent years for different promising applications with high value for individuals and society. A good example are wireless sensor networks for patients allowing for better and more efficient monitoring of patients in hospitals or even early discharge form hospital and monitoring at home. These visions have hardly led research as reliability is and issue with wireless networks to be known error-prone. In life critical applications like health care this is not an aspect to be handled carelessly. Fail-safety is an important property for patient monitoring systems. The Ambient Assistance for Recovery (AA4R) project of the Hamburg University of Technology researches on a fail-safe patient monitoring system. Our vision is a dynamically distributed system using suitable devices in the area of a patient. The data in the network is stored with redundancy on several nodes. Patient data is analyzed in the network and uploaded to a medical server. As devices appear, disappear and fail, so do the services being executed on those devices. This article focuses on a Reincarnation Service (RS) to track the functionality of the processes. The RS takes suitable actions when a failure is detected to correct or isolate the failure. Checking of the nodes is done adaptively to achieve a good response time to failures and reduce the power consumption. © Martin Ringwelski, Andreas Timm-Giel, and Volker Turau.en
dc.language.isoende_DE
dc.subjectDistributed systemsde_DE
dc.subjectFail-safetyde_DE
dc.subjectFailure maskingde_DE
dc.subjectHealth monitoringde_DE
dc.subjectWireless sensor networksde_DE
dc.subject.ddc380: Handel, Kommunikation, Verkehrde_DE
dc.titleAdaptive failure detection and correction in dynamic patient-networksde_DE
dc.typeinProceedingsde_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.048414-
dc.identifier.doi10.15480/882.2528-
dc.type.dinicontributionToPeriodical-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.048414-
tuhh.oai.showtruede_DE
tuhh.abstract.englishWireless sensors have been studied over recent years for different promising applications with high value for individuals and society. A good example are wireless sensor networks for patients allowing for better and more efficient monitoring of patients in hospitals or even early discharge form hospital and monitoring at home. These visions have hardly led research as reliability is and issue with wireless networks to be known error-prone. In life critical applications like health care this is not an aspect to be handled carelessly. Fail-safety is an important property for patient monitoring systems. The Ambient Assistance for Recovery (AA4R) project of the Hamburg University of Technology researches on a fail-safe patient monitoring system. Our vision is a dynamically distributed system using suitable devices in the area of a patient. The data in the network is stored with redundancy on several nodes. Patient data is analyzed in the network and uploaded to a medical server. As devices appear, disappear and fail, so do the services being executed on those devices. This article focuses on a Reincarnation Service (RS) to track the functionality of the processes. The RS takes suitable actions when a failure is detected to correct or isolate the failure. Checking of the nodes is done adaptively to achieve a good response time to failures and reduce the power consumption. © Martin Ringwelski, Andreas Timm-Giel, and Volker Turau.de_DE
tuhh.publisher.doi10.4230/OASIcs.MCPS.2014.38-
tuhh.publication.instituteKommunikationsnetze E-4de_DE
tuhh.publication.instituteTelematik E-17de_DE
tuhh.identifier.doi10.15480/882.2528-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
tuhh.institute.germanKommunikationsnetze E-4de
tuhh.institute.englishKommunikationsnetze E-4de_DE
tuhh.gvk.hasppnfalse-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.volume36de_DE
tuhh.container.startpage38de_DE
tuhh.container.endpage48de_DE
dc.rights.nationallicensefalsede_DE
tuhh.relation.ispartofseriesOpen access series in informaticsde_DE
local.status.inpressfalsede_DE
item.cerifentitytypePublications-
item.tuhhseriesidOpen access series in informatics-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.fulltextWith Fulltext-
item.creatorOrcidRingwelski, Martin-
item.creatorOrcidTimm-Giel, Andreas-
item.creatorOrcidTurau, Volker-
item.openairetypeinProceedings-
item.languageiso639-1en-
item.creatorGNDRingwelski, Martin-
item.creatorGNDTimm-Giel, Andreas-
item.creatorGNDTurau, Volker-
item.grantfulltextopen-
crisitem.author.deptKommunikationsnetze E-4-
crisitem.author.deptKommunikationsnetze E-4-
crisitem.author.deptTelematik E-17-
crisitem.author.orcid0000-0002-5998-6113-
crisitem.author.orcid0000-0001-9964-8816-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
6-1.pdfVerlags-PDF672,59 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

48
Last Week
0
Last month
8
checked on May 28, 2020

Download(s)

3
checked on May 28, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.