DC FieldValueLanguage
dc.contributor.authorRadtke, Lars-
dc.contributor.authorKönig, Marcel-
dc.contributor.authorDüster, Alexander-
dc.date.accessioned2019-10-08T12:38:19Z-
dc.date.available2019-10-08T12:38:19Z-
dc.date.issued2017-
dc.identifier.citationComputers & Mathematics with Applications 7 (74): 1675-1689 (2017)de_DE
dc.identifier.issn1873-7668de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3518-
dc.description.abstractWe present a study of the fluid–structure interaction in an idealized end-to-end anastomosis of a vascular bypass-graft and an artery. Special attention is paid to the impact of geometric imperfections in the artery and the flow path of the upstream vessel segment on the hemodynamics. A partitioned solution approach is applied and developed further to solve the coupled problem in an implicit manner. To stabilize and accelerate the convergence of the staggered coupling iterations, an interface quasi-Newton least squares method is applied. While the finite volume method is used for the fluid mechanics subproblem, high-order finite elements serve to discretize the structural subproblem. A convergence study shows the efficiency of the high-order elements in the context of nearly incompressible, anisotropic materials used to model circular and irregular-shaped segments of an artery. The fluid–structure interaction simulations reveal a dominant influence of the upstream vessel’s curvature, which, however, decays rapidly in straight sections where the influence of geometric imperfections is dominant. Based on the proposed simulation approach, hemodynamic parameters such as the oscillating shear index can be directly linked to the shape and the intensity of the imperfections.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofComputers and mathematics with applicationsde_DE
dc.subjectcardiovascular fluid–structure interactionde_DE
dc.subjectend-to-end anastomosisde_DE
dc.subjectsoft tissue materialde_DE
dc.subjectpartitioned solution approachde_DE
dc.subject.ddc610: Medizinde_DE
dc.titleThe influence of geometric imperfections in cardiovascular FSI simulationsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dc.subject.ddccode610-
dcterms.DCMITypeText-
tuhh.abstract.englishWe present a study of the fluid–structure interaction in an idealized end-to-end anastomosis of a vascular bypass-graft and an artery. Special attention is paid to the impact of geometric imperfections in the artery and the flow path of the upstream vessel segment on the hemodynamics. A partitioned solution approach is applied and developed further to solve the coupled problem in an implicit manner. To stabilize and accelerate the convergence of the staggered coupling iterations, an interface quasi-Newton least squares method is applied. While the finite volume method is used for the fluid mechanics subproblem, high-order finite elements serve to discretize the structural subproblem. A convergence study shows the efficiency of the high-order elements in the context of nearly incompressible, anisotropic materials used to model circular and irregular-shaped segments of an artery. The fluid–structure interaction simulations reveal a dominant influence of the upstream vessel’s curvature, which, however, decays rapidly in straight sections where the influence of geometric imperfections is dominant. Based on the proposed simulation approach, hemodynamic parameters such as the oscillating shear index can be directly linked to the shape and the intensity of the imperfections.de_DE
tuhh.publisher.doi10.1016/j.camwa.2017.04.012-
tuhh.publication.instituteKonstruktion und Festigkeit von Schiffen M-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanKonstruktion und Festigkeit von Schiffen M-10de
tuhh.institute.englishKonstruktion und Festigkeit von Schiffen M-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue7de_DE
tuhh.container.volume74de_DE
tuhh.container.startpage1675de_DE
tuhh.container.endpage1689de_DE
dc.identifier.scopus2-s2.0-85018183723-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidRadtke, Lars-
item.creatorOrcidKönig, Marcel-
item.creatorOrcidDüster, Alexander-
item.creatorGNDRadtke, Lars-
item.creatorGNDKönig, Marcel-
item.creatorGNDDüster, Alexander-
item.openairetypeArticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.orcid0000-0001-7015-8928-
crisitem.author.orcid0000-0002-2162-3675-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

102
Last Week
1
Last month
3
checked on Nov 30, 2022

SCOPUSTM   
Citations

4
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.