Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2462
DC FieldValueLanguage
dc.contributor.authorHaße, Hendrik-
dc.contributor.authorLi, Bin-
dc.contributor.authorWeißenberg, Norbert-
dc.contributor.authorCirullies, Jan-
dc.contributor.authorOtto, Boris-
dc.date.accessioned2019-11-06T07:36:10Z-
dc.date.available2019-11-06T07:36:10Z-
dc.date.issued2019-09-26-
dc.identifier.isbn978-3-750249-47-9de_DE
dc.identifier.issn2365-5070de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3717-
dc.description.abstractPurpose: Key performance indicators (KPIs) are an essential management tool. Realtime KPIs for production and logistics form the basis for flexible and adaptive production systems. These indicators unfold their full potential if they are seamlessly integrated into the “Digital Twin” of a company for data analytics. Methodology: We apply the Design Science Research Methodology for Information Systems Research for deriving a digital twin architecture. Findings: Research in the field of digital twins is at an early state, where the main objective is to find new applications for this technology. The majority of digital twin applications relate to the fields of manufacturing. Finally, it became apparent that existing architectures are too generic for usage in logistics. Originality: The approach presented is an affordable solution for stakeholders to start with a digital transformation, based on standards and therefore highly technology-independent. The combined use of a lambda architecture with a semantic layer for flexible KPI definition is a special case.en
dc.language.isoende_DE
dc.publisherepublide_DE
dc.relation.ispartofProceedings of the Hamburg International Conference of Logistics (HICL)de_DE
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/
dc.subjectDigital Twinde_DE
dc.subjectReal-timede_DE
dc.subjectKPIde_DE
dc.subjectIoTde_DE
dc.subject.ddc330: Wirtschaftde_DE
dc.titleDigital twin for real-time data processing in logisticsde_DE
dc.typeinProceedingsde_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.054049-
dc.identifier.doi10.15480/882.2462-
dc.type.dinicontributionToPeriodical-
dc.subject.ddccode330-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.054049-
tuhh.oai.showtruede_DE
tuhh.abstract.englishPurpose: Key performance indicators (KPIs) are an essential management tool. Realtime KPIs for production and logistics form the basis for flexible and adaptive production systems. These indicators unfold their full potential if they are seamlessly integrated into the “Digital Twin” of a company for data analytics. Methodology: We apply the Design Science Research Methodology for Information Systems Research for deriving a digital twin architecture. Findings: Research in the field of digital twins is at an early state, where the main objective is to find new applications for this technology. The majority of digital twin applications relate to the fields of manufacturing. Finally, it became apparent that existing architectures are too generic for usage in logistics. Originality: The approach presented is an affordable solution for stakeholders to start with a digital transformation, based on standards and therefore highly technology-independent. The combined use of a lambda architecture with a semantic layer for flexible KPI definition is a special case.de_DE
tuhh.publisher.urlhttps://www.epubli.de/shop/buch/Artificial-Intelligence-and-Digital-Transformation-in-Supply-Chain-Management-Christian-M-Ringle-Thorsten-Blecker-Wolfgang-Kersten-9783750249479/92095-
tuhh.identifier.doi10.15480/882.2462-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
tuhh.institute.germanPersonalwirtschaft und Arbeitsorganisation W-9de
tuhh.institute.englishPersonalwirtschaft und Arbeitsorganisation W-9de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.startpage3de_DE
tuhh.container.endpage28de_DE
dc.relation.conferenceHamburg International Conference of Logistics (HICL) 2019de_DE
dc.rights.nationallicensefalsede_DE
tuhh.relation.ispartofseriesProceedings of the Hamburg International Conference of Logistics (HICL)de_DE
tuhh.relation.ispartofseriesnumber27de_DE
item.creatorGNDHaße, Hendrik-
item.creatorGNDLi, Bin-
item.creatorGNDWeißenberg, Norbert-
item.creatorGNDCirullies, Jan-
item.creatorGNDOtto, Boris-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.tuhhseriesidProceedings of the Hamburg International Conference of Logistics (HICL)-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeinProceedings-
item.seriesrefProceedings of the Hamburg International Conference of Logistics (HICL);27-
item.cerifentitytypePublications-
item.creatorOrcidHaße, Hendrik-
item.creatorOrcidLi, Bin-
item.creatorOrcidWeißenberg, Norbert-
item.creatorOrcidCirullies, Jan-
item.creatorOrcidOtto, Boris-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0003-3189-9461-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Haße_Weißenberg_Cirullies_Otto-Digital_Twin_for_Real-Time_Data_Processing_in_Logistics_hicl_2019.pdfDigital twin for real-time data processing in logistics1,02 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

264
Last Week
0
Last month
19
checked on Aug 11, 2020

Download(s)

193
checked on Aug 11, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons