Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2568
DC FieldValueLanguage
dc.contributor.authorWu, Yijuan-
dc.contributor.authorMarkmann, Jürgen-
dc.contributor.authorLilleodden, Erica-
dc.date.accessioned2020-01-13T12:07:59Z-
dc.date.available2020-01-13T12:07:59Z-
dc.date.issued2019-12-17-
dc.identifier.citationApplied Physics Letters 25 (115): 251602 (2019-12-17)de_DE
dc.identifier.issn1077-3118de_DE
dc.identifier.urihttp://hdl.handle.net/11420/4339-
dc.description.abstractThe observation of reversible strengthening and stiffening of nanoporous gold (NPG) under electrochemical potential has opened opportunities to exploit this material for multifunctional applications. Yet the complex structural geometry and length-scales involved make a definitive understanding of structural correlations to the behaviors difficult at best. Achievement of coupled electro-chemo-mechanical testing at the micrometer scale is a key step toward this goal. Here, we introduce an experimental approach to investigate the elastic and plastic behaviors of NPG under electrochemical potential at the microscale using a modified nanoindentation setup and multiple load function. The in situ experiments in electrolyte show a significant increase by 32% in strength of pillars in a positive potential regime where oxygen adsorption occurred. This response was found to be reversible, which agrees with macroscopic results, while the elastic modulus was shown to be insensitive to the applied potential - an observation inconsistent with recent bulk dynamic mechanical analysis results.en
dc.language.isoende_DE
dc.publisherAmerican Inst. of Physicsde_DE
dc.relation.ispartofApplied physics lettersde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleElectro-chemo-mechanical coupling of nanoporous gold at the microscalede_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.2568-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.062841-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThe observation of reversible strengthening and stiffening of nanoporous gold (NPG) under electrochemical potential has opened opportunities to exploit this material for multifunctional applications. Yet the complex structural geometry and length-scales involved make a definitive understanding of structural correlations to the behaviors difficult at best. Achievement of coupled electro-chemo-mechanical testing at the micrometer scale is a key step toward this goal. Here, we introduce an experimental approach to investigate the elastic and plastic behaviors of NPG under electrochemical potential at the microscale using a modified nanoindentation setup and multiple load function. The in situ experiments in electrolyte show a significant increase by 32% in strength of pillars in a positive potential regime where oxygen adsorption occurred. This response was found to be reversible, which agrees with macroscopic results, while the elastic modulus was shown to be insensitive to the applied potential - an observation inconsistent with recent bulk dynamic mechanical analysis results.de_DE
tuhh.publisher.doi10.1063/1.5128049-
tuhh.publication.instituteWerkstoffphysik und -technologie M-22de_DE
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.2568-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue25de_DE
tuhh.container.volume115de_DE
dc.rights.nationallicensefalsede_DE
tuhh.container.articlenumber251602de_DE
local.status.inpressfalsede_DE
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.creatorGNDWu, Yijuan-
item.creatorGNDMarkmann, Jürgen-
item.creatorGNDLilleodden, Erica-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypeArticle-
item.languageiso639-1en-
item.creatorOrcidWu, Yijuan-
item.creatorOrcidMarkmann, Jürgen-
item.creatorOrcidLilleodden, Erica-
item.grantfulltextopen-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0002-2648-9938-
crisitem.author.orcid0000-0002-1384-0581-
crisitem.author.orcid0000-0002-4014-0986-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1.5128049.pdfVerlags-PDF2,38 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

141
Last Week
1
Last month
4
checked on Aug 12, 2020

Download(s)

66
checked on Aug 12, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons