DC FieldValueLanguage
dc.contributor.authorAyuso De Dios, Blanca-
dc.contributor.authorHiptmair, Ralf-
dc.contributor.authorPagliantini, Cecilia-
dc.date.accessioned2020-01-16T12:43:06Z-
dc.date.available2020-01-16T12:43:06Z-
dc.date.issued2016-06-02-
dc.identifier.citationIMA Journal of Numerical Analysis 2 (37): 646-686 (2017)de_DE
dc.identifier.issn1464-3642de_DE
dc.identifier.urihttp://hdl.handle.net/11420/4395-
dc.description.abstractWe propose a family of preconditioners for linear systems of equations arising from a piecewise polynomial symmetric interior penalty discontinuous Galerkin discretization of H(curl,ω)-elliptic boundary value problems on conforming meshes. The design and analysis of the proposed preconditioners rely on the auxiliary space method (ASM) employing an auxiliary space of H(curl,ω)-conforming finite element functions together with a relaxation technique (local smoothing). On simplicial meshes, the proposed preconditioner enjoys asymptotic optimality with respect to mesh refinement. It is also robust with respect to jumps in the coefficients ? and b in the second-and zeroth-order parts of the operator, respectively, except when the problem changes from curl-dominated to reaction-dominated and vice versa. On quadrilateral/hexahedral meshes some of the proposed ASM solvers may fail, since the related H(curl,ω)-conforming finite element space does not provide a spectrally accurate discretization. Extensive numerical experiments are included to verify the theory and assess the performance of the preconditioners.en
dc.language.isoende_DE
dc.publisherOxford Univ. Pressde_DE
dc.relation.ispartofIMA journal of numerical analysisde_DE
dc.subjectauxiliary space preconditioningde_DE
dc.subjectdiscontinuous coefficientsde_DE
dc.subjectdiscontinuous Galerkin methodsde_DE
dc.subjectH(curlω)-elliptic problemsde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleAuxiliary space preconditioners for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficientsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishWe propose a family of preconditioners for linear systems of equations arising from a piecewise polynomial symmetric interior penalty discontinuous Galerkin discretization of H(curl,ω)-elliptic boundary value problems on conforming meshes. The design and analysis of the proposed preconditioners rely on the auxiliary space method (ASM) employing an auxiliary space of H(curl,ω)-conforming finite element functions together with a relaxation technique (local smoothing). On simplicial meshes, the proposed preconditioner enjoys asymptotic optimality with respect to mesh refinement. It is also robust with respect to jumps in the coefficients ? and b in the second-and zeroth-order parts of the operator, respectively, except when the problem changes from curl-dominated to reaction-dominated and vice versa. On quadrilateral/hexahedral meshes some of the proposed ASM solvers may fail, since the related H(curl,ω)-conforming finite element space does not provide a spectrally accurate discretization. Extensive numerical experiments are included to verify the theory and assess the performance of the preconditioners.de_DE
tuhh.publisher.doi10.1093/imanum/drw018-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume37de_DE
tuhh.container.startpage646de_DE
tuhh.container.endpage686de_DE
dc.identifier.scopus2-s2.0-85019056970-
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDAyuso De Dios, Blanca-
item.creatorGNDHiptmair, Ralf-
item.creatorGNDPagliantini, Cecilia-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidAyuso De Dios, Blanca-
item.creatorOrcidHiptmair, Ralf-
item.creatorOrcidPagliantini, Cecilia-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-1378-2668-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

98
Last Week
1
Last month
3
checked on Aug 17, 2022

SCOPUSTM   
Citations

2
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.