DC FieldValueLanguage
dc.contributor.authorLe Borne, Sabine-
dc.date.accessioned2020-02-18T13:41:16Z-
dc.date.available2020-02-18T13:41:16Z-
dc.date.issued2016-01-01-
dc.identifier.citationLecture Notes in Computational Science and Engineering (104): 559-566 (2016-01-01)de_DE
dc.identifier.isbn978-3-319-18827-0de_DE
dc.identifier.isbn978-3-319-18826-3de_DE
dc.identifier.issn2197-7100de_DE
dc.identifier.urihttp://hdl.handle.net/11420/4961-
dc.description.abstractThe finite element discretization of partial differential equations (PDEs) requires the selection of suitable finite element spaces. While high-order finite elements often lead to solutions of higher accuracy, their associated discrete linear systems of equations are often more difficult to solve (and to set up) compared to those of lower order elements. We will present and compare preconditioners for these types of linear systems of equations. More specifically, we will use hierarchical (H-) matrices to build block H-LU preconditioners. H-matrices provide a powerful technique to compute and store approximations to dense matrices in a data-sparse format. We distinguish between blackbox H-LU preconditioners which factor the entire stiffness matrix and hybrid methods in which only certain subblocks of the matrix are factored after some problem-specific information has been exploited.We conclude with numerical results.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleHierarchical preconditioners for high-order FEMde_DE
dc.typeinProceedingsde_DE
dc.type.dinicontributionToPeriodical-
dcterms.DCMITypeText-
tuhh.abstract.englishThe finite element discretization of partial differential equations (PDEs) requires the selection of suitable finite element spaces. While high-order finite elements often lead to solutions of higher accuracy, their associated discrete linear systems of equations are often more difficult to solve (and to set up) compared to those of lower order elements. We will present and compare preconditioners for these types of linear systems of equations. More specifically, we will use hierarchical (H-) matrices to build block H-LU preconditioners. H-matrices provide a powerful technique to compute and store approximations to dense matrices in a data-sparse format. We distinguish between blackbox H-LU preconditioners which factor the entire stiffness matrix and hybrid methods in which only certain subblocks of the matrix are factored after some problem-specific information has been exploited.We conclude with numerical results.de_DE
tuhh.publisher.doi10.1007/978-3-319-18827-0_57-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.startpage559de_DE
tuhh.container.endpage566de_DE
tuhh.relation.ispartofseriesLecture notes in computational science and engineeringde_DE
tuhh.relation.ispartofseriesnumber104 LNCSEde_DE
dc.identifier.scopus2-s2.0-84961203339-
local.status.inpressfalsede_DE
datacite.resourceTypeConference Paper-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorGNDLe Borne, Sabine-
item.openairetypeinProceedings-
item.tuhhseriesidLecture notes in computational science and engineering-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidLe Borne, Sabine-
item.languageiso639-1en-
item.seriesrefLecture notes in computational science and engineering;104 LNCSE-
item.mappedtypeinProceedings-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-4399-4442-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

84
Last Week
1
Last month
3
checked on Aug 15, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.