Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.57
Publisher DOI: 10.1016/j.jcp.2006.01.034
Title: Iterative projection methods for computing relevant energy states of a quantum dot
Language: English
Authors: Voß, Heinrich 
Keywords: quantum dot;electron states;rational eigenproblem;Arnoldi method;Jacobi-Davidson method
Issue Date: Aug-2005
Source: Preprint. Published in Journal of computational physics.Volume 217, Issue 2, 20 September 2006, Pages 824-833
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 92
Abstract (english): A computational technique for computing relevant energy levels and corresponding wave functions of an electron confined by a 3D quantum dot embedded in a semiconductor matrix are studied. Assuming an energy and position dependent electron effective mass approximation this problem is governed by a rational eigenvalue problem. We discuss the application of iterative projection method of Arnoldi and Jacobi–Davidson type. Projected problems of small dimension are solved efficiently by safeguarded iteration.
URI: http://tubdok.tub.tuhh.de/handle/11420/59
DOI: 10.15480/882.57
Institute: Mathematik E-10 
Type: Preprint (Vorabdruck)
Appears in Collections:Publications (tub.dok)

Files in This Item:
File Description SizeFormat
rep92.pdf143,14 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

265
Last Week
3
Last month
7
checked on May 25, 2019

Download(s)

96
checked on May 25, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.