Publisher DOI: 10.1007/s00466-016-1268-0
Title: Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries
Authors: Radtke, Lars 
Larena-Avellaneda, Axel 
Debus, Eike Sebastian 
Düster, Alexander 
Keywords: Cardiovascular fluid-structure interaction; Convergence acceleration; Partitioned approach; Soft tissue material
Issue Date: 1-Jun-2016
Source: Computational Mechanics 6 (57): 901-920 (2016-06-01)
Abstract (english): 
We present a partitioned approach to fluid-structure interaction problems arising in analyses of blood flow in arteries. Several strategies to accelerate the convergence of the fixed-point iteration resulting from the coupling of the fluid and the structural sub-problem are investigated. The Aitken relaxation and variants of the interface quasi-Newton -least-squares method are applied to different test cases. A hybrid variant of two well-known variants of the interface quasi-Newton-least-squares method is found to perform best. The test cases cover the typical boundary value problem faced when simulating the fluid-structure interaction in arteries, including a strong added mass effect and a wet surface which accounts for a large part of the overall surface of each sub-problem. A rubber-like Neo Hookean material model and a soft-tissue-like Holzapfel-Gasser-Ogden material model are used to describe the artery wall and are compared in terms of stability and computational expenses. To avoid any kind of locking, high-order finite elements are used to discretize the structural sub-problem. The finite volume method is employed to discretize the fluid sub-problem. We investigate the influence of mass-proportional damping and the material model chosen for the artery on the performance and stability of the acceleration strategies as well as on the simulation results. To show the applicability of the partitioned approach to clinical relevant studies, the hemodynamics in a pathologically deformed artery are investigated, taking the findings of the test case simulations into account.
URI: http://hdl.handle.net/11420/5941
ISSN: 0178-7675
Journal: Computational Mechanics 
Institute: Konstruktion und Festigkeit von Schiffen M-10 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

49
Last Week
1
Last month
2
checked on Feb 7, 2023

SCOPUSTM   
Citations

13
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.