DC FieldValueLanguage
dc.contributor.authorGroßmann, Julian Peter-
dc.contributor.authorSchulz-Baldes, Hermann-
dc.contributor.authorVillegas-Blas, Carlos-
dc.date.accessioned2020-05-04T06:46:57Z-
dc.date.available2020-05-04T06:46:57Z-
dc.date.issued2019-08-01-
dc.identifier.citationInternational Mathematics Research Notices 15 (2019): 4579-4602 (2019-08-01)de_DE
dc.identifier.issn1687-0247de_DE
dc.identifier.urihttp://hdl.handle.net/11420/6016-
dc.description.abstractSturm-Liouville oscillation theory is studied for Jacobi operators with block entries given by covariant operators on an infinite dimensional Hilbert space. It is shown that the integrated density of states of the Jacobi operator is approximated by the winding of the Prüfer phase w.r.t. the trace per unit volume. This rotation number can be interpreted as a spectral flow in a von Neumann algebra with finite trace.en
dc.language.isoende_DE
dc.relation.ispartofInternational mathematics research noticesde_DE
dc.titleOscillation Theory for the Density of States of High Dimensional Random Operatorsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishSturm-Liouville oscillation theory is studied for Jacobi operators with block entries given by covariant operators on an infinite dimensional Hilbert space. It is shown that the integrated density of states of the Jacobi operator is approximated by the winding of the Prüfer phase w.r.t. the trace per unit volume. This rotation number can be interpreted as a spectral flow in a von Neumann algebra with finite trace.de_DE
tuhh.publisher.doi10.1093/imrn/rnx246-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue15de_DE
tuhh.container.volume2019de_DE
tuhh.container.startpage4579de_DE
tuhh.container.endpage4602de_DE
dc.identifier.scopus2-s2.0-85083892239-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextnone-
item.creatorOrcidGroßmann, Julian Peter-
item.creatorOrcidSchulz-Baldes, Hermann-
item.creatorOrcidVillegas-Blas, Carlos-
item.mappedtypeArticle-
item.creatorGNDGroßmann, Julian Peter-
item.creatorGNDSchulz-Baldes, Hermann-
item.creatorGNDVillegas-Blas, Carlos-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-2953-7701-
crisitem.author.orcid0000-0003-0304-4140-
crisitem.author.orcid0000-0003-2467-9284-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

70
Last Week
1
Last month
2
checked on Aug 8, 2022

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.