Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.58
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2005-12-14T16:31:43Zde_DE
dc.date.available2005-12-14T16:31:43Zde_DE
dc.date.issued2005-08-
dc.identifier.citationPreprint. Published in: Computer Physics CommunicationsVolume 174, Issue 6, 15 March 2006, Pages 441-446de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/60-
dc.description.abstractIn some recent papers Li, Voskoboynikov, Lee, Sze and Tretyak suggested an iterative scheme for computing the electronic states of quantum dots and quantum rings taking into account an electron effective mass which depends on the position and electron energy level. In this paper we prove that this method converges globally and linearly in an alternating way, i.e. yielding lower and upper bounds of a predetermined energy level in turn. Moreover, taking advantage of the Rayleigh functional of the governing nonlinear eigenproblem, we propose a variant which converges even quadratically thereby reducing the computational cost substantially. Two examples of finite element models of quantum dots of different shapes demonstrate the efficiency of the method.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 91-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectquantum dotde_DE
dc.subjectnonlinear eigenproblemde_DE
dc.subjectSchrödinger equationde_DE
dc.subjectRayleigh functionalde_DE
dc.subjectcomputer simulationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleNumerical calculation of the electronic structure for three-dimensional quantum dotsde_DE
dc.typePreprintde_DE
dc.date.updated2005-12-14T16:31:44Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1139de_DE
dc.identifier.doi10.15480/882.58-
dc.type.dinipreprint-
dc.subject.gndQuantenpunktde
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.gndSchrödinger-Gleichungde
dc.subject.gndComputersimulationde
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1139de_DE
tuhh.publikation.typpreprintde_DE
tuhh.opus.id113de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/60-
tuhh.abstract.englishIn some recent papers Li, Voskoboynikov, Lee, Sze and Tretyak suggested an iterative scheme for computing the electronic states of quantum dots and quantum rings taking into account an electron effective mass which depends on the position and electron energy level. In this paper we prove that this method converges globally and linearly in an alternating way, i.e. yielding lower and upper bounds of a predetermined energy level in turn. Moreover, taking advantage of the Rayleigh functional of the governing nonlinear eigenproblem, we propose a variant which converges even quadratically thereby reducing the computational cost substantially. Two examples of finite element models of quantum dots of different shapes demonstrate the efficiency of the method.de_DE
tuhh.publisher.doi10.1016/j.cpc.2005.12.003-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.58-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930767657-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber91de_DE
dc.identifier.scopus2-s2.0-33344457300-
datacite.resourceTypeOther-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.creatorGNDVoß, Heinrich-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairetypePreprint-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.seriesrefPreprints des Institutes für Mathematik;91-
item.creatorOrcidVoß, Heinrich-
item.mappedtypePreprint-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep91.pdf329,46 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

455
Last Week
1
Last month
7
checked on Aug 17, 2022

Download(s)

404
checked on Aug 17, 2022

SCOPUSTM   
Citations

32
Last Week
0
Last month
3
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.