Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.61

DC Field | Value | Language |
---|---|---|
dc.contributor.author | Voß, Heinrich | - |
dc.contributor.author | Mehrmann, Volker | - |
dc.date.accessioned | 2005-12-14T16:36:41Z | de_DE |
dc.date.available | 2005-12-14T16:36:41Z | de_DE |
dc.date.issued | 2004-01 | - |
dc.identifier.citation | Preprint. Published in: GAMM Mitteilungen ; 27.2004, S.121-152 | de_DE |
dc.identifier.uri | http://tubdok.tub.tuhh.de/handle/11420/63 | - |
dc.description.abstract | We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results. | en |
dc.language.iso | en | de_DE |
dc.relation.ispartofseries | Preprints des Institutes für Mathematik;Bericht 83 | - |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | matrix polynomial | de_DE |
dc.subject | projection method | de_DE |
dc.subject | Krylov-subspace method | de_DE |
dc.subject | Arnoldi method | de_DE |
dc.subject | rational-Krylov method | de_DE |
dc.subject | linearization | de_DE |
dc.subject | structure preservation | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods | de_DE |
dc.type | Technical Report | de_DE |
dc.date.updated | 2005-12-19T17:09:04Z | de_DE |
dc.identifier.urn | urn:nbn:de:gbv:830-opus-1167 | de_DE |
dc.identifier.doi | 10.15480/882.61 | - |
dc.type.dini | report | - |
dc.subject.gnd | Nichtlineares Eigenwertproblem | de |
dc.subject.gnd | Matrizenpolynom | de |
dc.subject.gnd | Projektionsverfahren | de |
dc.subject.gnd | Krylov-Verfahren | de |
dc.subject.ddccode | 510 | - |
dc.subject.msc | 15A18:Eigenvalues, singular values, and eigenvectors | en |
dc.subject.msc | 65F15:Eigenvalues, eigenvectors | en |
dc.subject.msccode | 15A18 | - |
dc.subject.msccode | 65F15 | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-opus-1167 | de_DE |
tuhh.publikation.typ | report | de_DE |
tuhh.publikation.source | GAMM Mitteilungen ; 27.2004, S.121-152 | de_DE |
tuhh.opus.id | 116 | de_DE |
tuhh.oai.show | true | de_DE |
dc.identifier.hdl | 11420/63 | - |
tuhh.abstract.english | We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results. | de_DE |
tuhh.publisher.doi | 10.1002/gamm.201490007 | - |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.61 | - |
tuhh.type.opus | Report (Bericht) | - |
tuhh.institute.german | Mathematik E-10 | de |
tuhh.institute.english | Mathematics E-10 | en |
tuhh.institute.id | 47 | de_DE |
tuhh.type.id | 20 | de_DE |
tuhh.gvk.hasppn | false | - |
tuhh.series.id | 20 | - |
tuhh.series.name | Preprints des Institutes für Mathematik | - |
dc.type.driver | report | - |
dc.identifier.oclc | 930768125 | - |
dc.type.casrai | Report | - |
tuhh.relation.ispartofseries | Preprints des Institutes für Mathematik | de_DE |
tuhh.relation.ispartofseriesnumber | 83 | de_DE |
datacite.resourceType | Report | - |
datacite.resourceTypeGeneral | Text | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18gh | - |
item.creatorGND | Voß, Heinrich | - |
item.creatorGND | Mehrmann, Volker | - |
item.openairetype | Technical Report | - |
item.tuhhseriesid | Preprints des Institutes für Mathematik | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.creatorOrcid | Voß, Heinrich | - |
item.creatorOrcid | Mehrmann, Volker | - |
item.languageiso639-1 | en | - |
item.seriesref | Preprints des Institutes für Mathematik;83 | - |
item.mappedtype | Technical Report | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0003-2394-375X | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Page view(s)
363
Last Week
0
0
Last month
4
4
checked on Aug 17, 2022
Download(s)
275
checked on Aug 17, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.