Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.61
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.contributor.authorMehrmann, Volker-
dc.date.accessioned2005-12-14T16:36:41Zde_DE
dc.date.available2005-12-14T16:36:41Zde_DE
dc.date.issued2004-01-
dc.identifier.citationPreprint. Published in: GAMM Mitteilungen ; 27.2004, S.121-152de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/63-
dc.description.abstractWe discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 83-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectmatrix polynomialde_DE
dc.subjectprojection methodde_DE
dc.subjectKrylov-subspace methodde_DE
dc.subjectArnoldi methodde_DE
dc.subjectrational-Krylov methodde_DE
dc.subjectlinearizationde_DE
dc.subjectstructure preservationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleNonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methodsde_DE
dc.typeTechnical Reportde_DE
dc.date.updated2005-12-19T17:09:04Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1167de_DE
dc.identifier.doi10.15480/882.61-
dc.type.dinireport-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.gndMatrizenpolynomde
dc.subject.gndProjektionsverfahrende
dc.subject.gndKrylov-Verfahrende
dc.subject.ddccode510-
dc.subject.msc15A18:Eigenvalues, singular values, and eigenvectorsen
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode15A18-
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1167de_DE
tuhh.publikation.typreportde_DE
tuhh.publikation.sourceGAMM Mitteilungen ; 27.2004, S.121-152de_DE
tuhh.opus.id116de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/63-
tuhh.abstract.englishWe discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results.de_DE
tuhh.publisher.doi10.1002/gamm.201490007-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.61-
tuhh.type.opusReport (Bericht)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id20de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverreport-
dc.identifier.oclc930768125-
dc.type.casraiReport-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber83de_DE
datacite.resourceTypeReport-
datacite.resourceTypeGeneralText-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18gh-
item.creatorGNDVoß, Heinrich-
item.creatorGNDMehrmann, Volker-
item.openairetypeTechnical Report-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidVoß, Heinrich-
item.creatorOrcidMehrmann, Volker-
item.languageiso639-1en-
item.seriesrefPreprints des Institutes für Mathematik;83-
item.mappedtypeTechnical Report-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep83.pdf366,08 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

363
Last Week
0
Last month
4
checked on Aug 17, 2022

Download(s)

275
checked on Aug 17, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.