Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.62
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.contributor.authorBetcke, Marta-
dc.date.accessioned2005-12-16T11:43:38Zde_DE
dc.date.available2005-12-16T11:43:38Zde_DE
dc.date.issued2004-10-
dc.identifier.citationPreprint. Published in: Proceedings of ALGORITMY, 2005de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/64-
dc.description.abstractFor nonlinear eigenvalue problems $T(lambda)x = 0$ satisfying a minmax characterization of its eigenvalues iterative projection methods combined with safeguarded iteration are suitable for computing all eigenvalues in a given interval. Such methods hit their limitation if a large number of eigenvalues (in the interior of the spectrum) are required. In this paper we propose a localized version of safeguarded iteration which is able to cope with this problem.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik; Bericht 82-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecteigenvaluede_DE
dc.subjectnonlinear eigenproblemde_DE
dc.subjectArnoldi methodde_DE
dc.subjectrestart techniquede_DE
dc.subjectminmax characterizationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleA local restart procedure for iterative projection methods for nonlinear symmetric eigenproblemsde_DE
dc.typePreprintde_DE
dc.date.updated2005-12-16T11:44:07Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1173de_DE
dc.identifier.doi10.15480/882.62-
dc.type.dinipreprint-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.gndIterationde
dc.subject.gndProjektionsmethodede
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msc15A18:Eigenvalues, singular values, and eigenvectorsen
dc.subject.msccode65F15-
dc.subject.msccode15A18-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1173de_DE
tuhh.publikation.typpreprintde_DE
tuhh.publikation.sourceProceedings of ALGORITMY, 2005de_DE
tuhh.opus.id117de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/64-
tuhh.abstract.englishFor nonlinear eigenvalue problems $T(lambda)x = 0$ satisfying a minmax characterization of its eigenvalues iterative projection methods combined with safeguarded iteration are suitable for computing all eigenvalues in a given interval. Such methods hit their limitation if a large number of eigenvalues (in the interior of the spectrum) are required. In this paper we propose a localized version of safeguarded iteration which is able to cope with this problem.de_DE
tuhh.publisher.urlhttp://pc2.iam.fmph.uniba.sk/amuc/_contributed/algo2005/markiewicz-voss.pdf-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.62-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930768124-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber82de_DE
item.seriesrefPreprints des Institutes für Mathematik;82-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypePreprint-
item.grantfulltextopen-
item.creatorOrcidVoß, Heinrich-
item.creatorOrcidBetcke, Marta-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.creatorGNDVoß, Heinrich-
item.creatorGNDBetcke, Marta-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.orcid0000-0003-3818-2121-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep82.pdf153,73 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

277
Last Week
0
Last month
2
checked on Oct 20, 2020

Download(s)

279
checked on Oct 20, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.