Publisher DOI: 10.1016/j.compfluid.2015.01.008
Title: Experience using pressure-based CFD methods for Euler-Euler simulations of cavitating flows
Language: English
Authors: Yakubov, Sergey 
Maquil, Thierry 
Rung, Thomas  
Keywords: Cavitation simulation;Compressible flow;Euler-Euler cavitation model;Pressure-based method
Issue Date: 2-Feb-2015
Publisher: Elsevier Science
Source: Computers and Fluids (111): 91-104 (2015-04-06)
Journal: Computers & fluids 
Abstract (english): 
The paper is devoted to different approaches of a pressure-velocity coupling method to account for density variations in cavitating two-phase flow simulations. Results obtained from two strategies are investigated in detail. A simpler engineering approach associated the variations of the local density solely with the changes of the vapor-volume fraction computed by a cavitation model and assumes incompressible vapor and water phases. A more elaborate method additionally accounts for the compressibility of the two individual fluid phases. Numerical issues of significance for engineering applications are discussed in the paper, such as the occurrence of ill-conditioned matrices or cavitation-model dependencies. The single-phase verification and validation study refers to prominent aerodynamic benchmarks, i.e. a convergent-divergent nozzle flow and the flow over a bump in a channel. Cavitating flow validations are concerned with a stationary flow over a hydrofoil. An unsteady cavitating flow over a NACA0015 hydrofoil is computed to demonstrate merits of the implemented compressible fluid method to simulate sheet and vapor cavitation including the collapse of a vapor cloud followed by a shock wave formation and propagation. Results demonstrate that the predicted cavitation pattern of the two approaches are very similar and the compressible flow model is only required when attention is directed to the evolution of pressure waves of the collapsing cavities, e.g. in erosion studies.
ISSN: 0045-7930
Institute: Fluiddynamik und Schiffstheorie M-8 
Document Type: Article
More Funding information: The current work is a part of the research project “Numerical simulation of cavitation erosion using coupled Euler–Lagrange models” funded by the German Research Foundation (DFG, Grant No. RU 1575/2-1 )..
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Jan 21, 2022


Last Week
Last month
checked on Jan 21, 2022

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.