Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2851
Fulltext available Open Access
Title: Efficient numerical treatment of aggregation integrals in multivariate population balance equations
Language: English
Authors: Ahrens, Robin 
Keywords: Population balance equation; Fast Fourier transformation; Tensor decomposition; Kernel estimates; Moment conservation; Multivariate Convolution
Issue Date: 2020
Examination Date: 8-Jun-2020
Source: Technische Universität Hamburg (2020)
Abstract (german): 
Diese Arbeit entwickelt effiziente numerischen Methoden für Aggregationsintegrale in multivariaten Populationsbilanz-Gleichungen auf einem uniformen Tensor-Gitter. Basis hierfür bilden die schnelle Fourier Transformationund das Tensor-train Format zur effizienten Speicherung der resultierenden Datenstruktur. Zusätzlich werden Aggregationskerne aus Zeit-diskreten Messungen gewonnen. Für alle Ergebnisse werden numerische Simulationen gezeigt.
Abstract (english): 
This work develops efficient numerical methods for aggregation integrals in multivariate population balance equations on a uniform tensor grid. These are based on the fast Fourier transform and the tensor-train format for the efficient storage of the resulting data structure. The inverse problem of kernelestimation from discrete in time data is additionally addressed. All results are underlined with numerical simulations.
URI: http://hdl.handle.net/11420/6907
DOI: 10.15480/882.2851
Institute: Mathematik E-10 
Document Type: Thesis
Thesis Type: Doctoral Thesis
Advisor: Le Borne, Sabine  
Referee: Benner, Peter 
Project: SPP 1679: Teilprojekt "Numerische Lösungsverfahren für gekoppelte Populationsbilanzsysteme zur dynamischen Simulation multivariater Feststoffprozesse am Beispiel der formselektiven Kristallisation" 
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Show full item record

Page view(s)

232
Last Week
1
Last month
8
checked on Jul 6, 2022

Download(s)

224
checked on Jul 6, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.