Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2851
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.advisorLe Borne, Sabine-
dc.contributor.authorAhrens, Robin-
dc.date.accessioned2020-07-29T09:28:37Z-
dc.date.available2020-07-29T09:28:37Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/11420/6907-
dc.description.abstractDiese Arbeit entwickelt effiziente numerischen Methoden für Aggregationsintegrale in multivariaten Populationsbilanz-Gleichungen auf einem uniformen Tensor-Gitter. Basis hierfür bilden die schnelle Fourier Transformationund das Tensor-train Format zur effizienten Speicherung der resultierenden Datenstruktur. Zusätzlich werden Aggregationskerne aus Zeit-diskreten Messungen gewonnen. Für alle Ergebnisse werden numerische Simulationen gezeigt.de
dc.description.abstractThis work develops efficient numerical methods for aggregation integrals in multivariate population balance equations on a uniform tensor grid. These are based on the fast Fourier transform and the tensor-train format for the efficient storage of the resulting data structure. The inverse problem of kernelestimation from discrete in time data is additionally addressed. All results are underlined with numerical simulations.en
dc.language.isoende_DE
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/de_DE
dc.subjectPopulation balance equationde_DE
dc.subjectFast Fourier transformationde_DE
dc.subjectTensor decompositionde_DE
dc.subjectKernel estimatesde_DE
dc.subjectMoment conservationde_DE
dc.subjectMultivariate Convolutionde_DE
dc.subject.ddc500: Naturwissenschaftende_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleEfficient numerical treatment of aggregation integrals in multivariate population balance equationsde_DE
dc.typeThesisde_DE
dcterms.dateAccepted2020-06-08-
dc.identifier.doi10.15480/882.2851-
dc.type.thesisdoctoralThesisde_DE
dc.type.dinidoctoralThesis-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0100905-
tuhh.oai.showtruede_DE
tuhh.abstract.germanDiese Arbeit entwickelt effiziente numerischen Methoden für Aggregationsintegrale in multivariaten Populationsbilanz-Gleichungen auf einem uniformen Tensor-Gitter. Basis hierfür bilden die schnelle Fourier Transformationund das Tensor-train Format zur effizienten Speicherung der resultierenden Datenstruktur. Zusätzlich werden Aggregationskerne aus Zeit-diskreten Messungen gewonnen. Für alle Ergebnisse werden numerische Simulationen gezeigt.de_DE
tuhh.abstract.englishThis work develops efficient numerical methods for aggregation integrals in multivariate population balance equations on a uniform tensor grid. These are based on the fast Fourier transform and the tensor-train format for the efficient storage of the resulting data structure. The inverse problem of kernelestimation from discrete in time data is additionally addressed. All results are underlined with numerical simulations.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.2851-
tuhh.type.opusDissertation-
tuhh.gvk.hasppnfalse-
tuhh.contributor.refereeBenner, Peter-
tuhh.hasurnfalse-
dc.type.driverdoctoralThesis-
thesis.grantor.universityOrInstitutionTechnische Universität Hamburgde_DE
thesis.grantor.placeHamburgde_DE
dc.type.casraiDissertation-
dc.relation.projectSPP 1679: Teilprojekt "Numerische Lösungsverfahren für gekoppelte Populationsbilanzsysteme zur dynamischen Simulation multivariater Feststoffprozesse am Beispiel der formselektiven Kristallisation"de_DE
dc.rights.nationallicensefalsede_DE
local.status.inpressfalsede_DE
item.advisorGNDLe Borne, Sabine-
item.creatorGNDAhrens, Robin-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeThesis-
item.cerifentitytypePublications-
item.creatorOrcidAhrens, Robin-
item.fulltextWith Fulltext-
crisitem.author.deptMathematik E-10-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Show simple item record

Page view(s)

62
Last Week
16
Last month
checked on Aug 11, 2020

Download(s)

32
checked on Aug 11, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.