Publisher DOI: 10.1016/
Title: Partitioned coupling strategies for multi-physically coupled radiative heat transfer problems
Language: English
Authors: Wendt, Gunnar 
Erbts, Patrick 
Düster, Alexander 
Keywords: Convergence acceleration;Multi-field problems;Partitioned solution strategy;Thermal radiation
Issue Date: 1-Nov-2015
Source: Journal of Computational Physics (300): 327-351 (2015-11-01)
Journal or Series Name: Journal of computational physics 
Abstract (english): This article aims to propose new aspects concerning a partitioned solution strategy for multi-physically coupled fields including the physics of thermal radiation. Particularly, we focus on the partitioned treatment of electro-thermo-mechanical problems with an additional fourth thermal radiation field. One of the main goals is to take advantage of the flexibility of the partitioned approach to enable combinations of different simulation software and solvers. Within the frame of this article, we limit ourselves to the case of nonlinear thermoelasticity at finite strains, using temperature-dependent material parameters. For the thermal radiation field, diffuse radiating surfaces and gray participating media are assumed. Moreover, we present a robust and fast partitioned coupling strategy for the fourth field problem. Stability and efficiency of the implicit coupling algorithm are improved drawing on several methods to stabilize and to accelerate the convergence. To conclude and to review the effectiveness and the advantages of the additional thermal radiation field several numerical examples are considered to study the proposed algorithm. In particular we focus on an industrial application, namely the electro-thermo-mechanical modeling of the field-assisted sintering technology.
ISSN: 1090-2716
Institute: Konstruktion und Festigkeit von Schiffen M-10 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Sep 29, 2020

Google ScholarTM


Add Files to Item

Note about this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.