DC FieldValueLanguage
dc.contributor.authorClemens, Dennis-
dc.contributor.authorMikalački, Mirjana-
dc.date.accessioned2020-09-21T08:34:07Z-
dc.date.available2020-09-21T08:34:07Z-
dc.date.issued2015-09-04-
dc.identifier.citationElectronic Journal of Combinatorics 3 (22): P3.42, 1-18 (2015)de_DE
dc.identifier.issn1077-8926de_DE
dc.identifier.urihttp://hdl.handle.net/11420/7354-
dc.description.abstractWe study the Maker-Breaker tournament game played on the edge set of a given graph G. Two players, Maker and Breaker, claim unclaimed edges of G in turns, while Maker additionally assigns orientations to the edges that she claims. If by the end of the game Maker claims all the edges of a pre-defined goal tournament, she wins the game. Given a tournament Tk on k vertices, we determine the threshold bias for the (1: b) Tk-tournament game on Kn. We also look at the (1: 1) Tk- tournament game played on the edge set of a random graph Gn,p and determine the threshold probability for Maker's win. We compare these games with the clique game and discuss whether a random graph intuition is satisfied.en
dc.language.isoende_DE
dc.publisherEMIS ELibEMSde_DE
dc.relation.ispartofThe electronic journal of combinatoricsde_DE
dc.subjectMaker-Breakerde_DE
dc.subjectpositional gamesde_DE
dc.subjecttournamentde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleA remark on the tournament gamede_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishWe study the Maker-Breaker tournament game played on the edge set of a given graph G. Two players, Maker and Breaker, claim unclaimed edges of G in turns, while Maker additionally assigns orientations to the edges that she claims. If by the end of the game Maker claims all the edges of a pre-defined goal tournament, she wins the game. Given a tournament Tk on k vertices, we determine the threshold bias for the (1: b) Tk-tournament game on Kn. We also look at the (1: 1) Tk- tournament game played on the edge set of a random graph Gn,p and determine the threshold probability for Maker's win. We compare these games with the clique game and discuss whether a random graph intuition is satisfied.de_DE
tuhh.publisher.doi10.37236/5142-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue3de_DE
tuhh.container.volume22de_DE
tuhh.container.startpage1de_DE
tuhh.container.endpage18de_DE
dc.identifier.scopus2-s2.0-84942163642de_DE
tuhh.container.articlenumberP3.42de_DE
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.creatorGNDClemens, Dennis-
item.creatorGNDMikalački, Mirjana-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.creatorOrcidClemens, Dennis-
item.creatorOrcidMikalački, Mirjana-
item.mappedtypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-5940-6556-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

77
Last Week
0
Last month
1
checked on Aug 17, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.