Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3026
DC FieldValueLanguage
dc.contributor.authorBor, Büsra-
dc.contributor.authorHeilmann, Lydia-
dc.contributor.authorDomènech, Berta-
dc.contributor.authorKampferbeck, Michael-
dc.contributor.authorVossmeyer, Tobias-
dc.contributor.authorWeller, Horst-
dc.contributor.authorSchneider, Gerold A.-
dc.contributor.authorGiuntini, Diletta-
dc.date.accessioned2020-10-28T12:26:57Z-
dc.date.available2020-10-28T12:26:57Z-
dc.date.issued2020-10-19-
dc.identifierdoi: 10.3390/molecules25204790-
dc.identifier.citationMolecules 25 (20): 4790 (2020)de_DE
dc.identifier.issn1420-3049de_DE
dc.identifier.urihttp://hdl.handle.net/11420/7712-
dc.description.abstractMultiscale ceramic-organic supercrystalline nanocomposites with two levels of hierarchy have been developed via self-assembly with tailored content of the organic phase. These nanocomposites consist of organically functionalized ceramic nanoparticles forming supercrystalline micron-sized grains, which are in turn embedded in an organic-rich matrix. By applying an additional heat treatment step at mild temperatures (250–350 °C), the mechanical properties of the hierarchical nanocomposites are here enhanced. The heat treatment leads to partial removal and crosslinking of the organic phase, minimizing the volume occupied by the nanocomposites’ soft phase and triggering the formation of covalent bonds through the organic ligands interfacing the ceramic nanoparticles. Elastic modulus and hardness up to 45 and 2.5 GPa are attained, while the hierarchical microstructure is preserved. The presence of an organic phase between the supercrystalline grains provides a toughening effect, by curbing indentation-induced cracks. A mapping of the nanocomposites’ mechanical properties reveals the presence of multiple microstructural features and how they evolve with heat treatment temperature. A comparison with non-hierarchical, homogeneous supercrystalline nanocomposites with lower organic content confirms how the hierarchy-inducing organic excess results in toughening, while maintaining the beneficial effects of crosslinking on the materials’ stiffness and hardness.-
dc.description.abstractMultiscale ceramic-organic supercrystalline nanocomposites with two levels of hierarchy have been developed via self-assembly with tailored content of the organic phase. These nanocomposites consist of organically functionalized ceramic nanoparticles forming supercrystalline micron-sized grains, which are in turn embedded in an organic-rich matrix. By applying an additional heat treatment step at mild temperatures (250–350 °C), the mechanical properties of the hierarchical nanocomposites are here enhanced. The heat treatment leads to partial removal and crosslinking of the organic phase, minimizing the volume occupied by the nanocomposites’ soft phase and triggering the formation of covalent bonds through the organic ligands interfacing the ceramic nanoparticles. Elastic modulus and hardness up to 45 and 2.5 GPa are attained, while the hierarchical microstructure is preserved. The presence of an organic phase between the supercrystalline grains provides a toughening effect, by curbing indentation-induced cracks. A mapping of the nanocomposites’ mechanical properties reveals the presence of multiple microstructural features and how they evolve with heat treatment temperature. A comparison with non-hierarchical, homogeneous supercrystalline nanocomposites with lower organic content confirms how the hierarchy-inducing organic excess results in toughening, while maintaining the beneficial effects of crosslinking on the materials’ stiffness and hardness.en
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofMoleculesde_DE
dc.rightsCC BY 4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectsupercrystalline materialde_DE
dc.subjectnanocompositede_DE
dc.subjecthierarchical materialde_DE
dc.subjectmechanical behaviorde_DE
dc.subjectnanoindentationde_DE
dc.subjectfracture toughnessde_DE
dc.subject.ddc540: Chemiede_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleMapping the mechanical properties of hierarchical supercrystalline ceramic-organic nanocompositesde_DE
dc.typeArticlede_DE
dc.date.updated2020-10-26T14:22:27Z-
dc.identifier.doi10.15480/882.3026-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0110660-
tuhh.oai.showtruede_DE
tuhh.abstract.englishMultiscale ceramic-organic supercrystalline nanocomposites with two levels of hierarchy have been developed via self-assembly with tailored content of the organic phase. These nanocomposites consist of organically functionalized ceramic nanoparticles forming supercrystalline micron-sized grains, which are in turn embedded in an organic-rich matrix. By applying an additional heat treatment step at mild temperatures (250–350 °C), the mechanical properties of the hierarchical nanocomposites are here enhanced. The heat treatment leads to partial removal and crosslinking of the organic phase, minimizing the volume occupied by the nanocomposites’ soft phase and triggering the formation of covalent bonds through the organic ligands interfacing the ceramic nanoparticles. Elastic modulus and hardness up to 45 and 2.5 GPa are attained, while the hierarchical microstructure is preserved. The presence of an organic phase between the supercrystalline grains provides a toughening effect, by curbing indentation-induced cracks. A mapping of the nanocomposites’ mechanical properties reveals the presence of multiple microstructural features and how they evolve with heat treatment temperature. A comparison with non-hierarchical, homogeneous supercrystalline nanocomposites with lower organic content confirms how the hierarchy-inducing organic excess results in toughening, while maintaining the beneficial effects of crosslinking on the materials’ stiffness and hardness.de_DE
tuhh.publisher.doi10.3390/molecules25204790-
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.3026-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue20de_DE
tuhh.container.volume25de_DE
dc.relation.projectSFB 986: Teilprojekt A6 - Herstellung und Charakterisierung hierarchischer, multi-funktionaler Keramik/Metall-Polymer Materialsystemede_DE
dc.rights.nationallicensefalsede_DE
tuhh.container.articlenumber4790de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoMinistry of National Education of the Republic of Turkeyde_DE
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.mappedtypeArticle-
item.openairetypeArticle-
item.creatorGNDBor, Büsra-
item.creatorGNDHeilmann, Lydia-
item.creatorGNDDomènech, Berta-
item.creatorGNDKampferbeck, Michael-
item.creatorGNDVossmeyer, Tobias-
item.creatorGNDWeller, Horst-
item.creatorGNDSchneider, Gerold A.-
item.creatorGNDGiuntini, Diletta-
item.languageiso639-1en-
item.creatorOrcidBor, Büsra-
item.creatorOrcidHeilmann, Lydia-
item.creatorOrcidDomènech, Berta-
item.creatorOrcidKampferbeck, Michael-
item.creatorOrcidVossmeyer, Tobias-
item.creatorOrcidWeller, Horst-
item.creatorOrcidSchneider, Gerold A.-
item.creatorOrcidGiuntini, Diletta-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantno192346071-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0001-5250-9624-
crisitem.author.orcid0000-0003-2042-4428-
crisitem.author.orcid0000-0002-9657-5188-
crisitem.author.orcid0000-0001-9738-3826-
crisitem.author.orcid0000-0003-2967-6955-
crisitem.author.orcid0000-0001-5780-6249-
crisitem.author.orcid0000-0003-3338-6432-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
molecules-25-04790.pdf8,92 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

186
Last Week
1
Last month
8
checked on Jul 24, 2021

Download(s)

157
checked on Jul 24, 2021

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
checked on Jul 23, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons