Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3239
DC FieldValueLanguage
dc.contributor.authorFischer, Pia-Kristina-
dc.contributor.authorSchneider, Gerold A.-
dc.date.accessioned2020-11-03T16:40:03Z-
dc.date.available2020-11-03T16:40:03Z-
dc.date.issued2021-02-02-
dc.identifier.citationJournal of the European Ceramic Society 2 (41): 1332-1341 (2021-02-02)de_DE
dc.identifier.issn0955-2219de_DE
dc.identifier.urihttp://hdl.handle.net/11420/7753-
dc.description.abstractThe dielectric breakdown strength of borosilicate glass and alumina was measured as a function of the voltage ramp rate on different material thicknesses and with different electrode configurations. While this is not a completely new approach, with our work we want to highlight the importance of appropriate measurement set-up and contribute to a better understanding and analysis of dielectric breakdown. The measurement of breakdown tests is generally anything but trivial and the comparison of breakdown results for different set-ups is difficult, especially because not all scientific articles go into detail on the measurement method and all the important parameters, which can influence the breakdown event. For the results shown in this work we mainly used glass as a suitable model material and two different electrode setups at eleven different voltage ramps in the range of 5 V/s to 10,000 V/s. We found that there is a clear dependence of the dielectric breakdown strength on the voltage ramp and the electrode configuration as well as it should be distinguished between breakdowns which initiated at electrode edge and those initiated within the electrode area. There is almost no scatter for breakdown strengths which were initiated inside a silver paste electrode in comparison to breakdown strength from the electrode edges.en
dc.language.isoende_DE
dc.relation.ispartofJournal of the European Ceramic Societyde_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.subjectBreakdown locationde_DE
dc.subjectDielectric breakdown strengthde_DE
dc.subjectElectrode configurationde_DE
dc.subjectInitialization sitede_DE
dc.subjectVoltage ramp dependencede_DE
dc.subject.ddc600: Technikde_DE
dc.titleInfluence of the experimental set-up and voltage ramp on the dielectric breakdown strength and breakdown site in borosilicate glassde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3239-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0111463-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThe dielectric breakdown strength of borosilicate glass and alumina was measured as a function of the voltage ramp rate on different material thicknesses and with different electrode configurations. While this is not a completely new approach, with our work we want to highlight the importance of appropriate measurement set-up and contribute to a better understanding and analysis of dielectric breakdown. The measurement of breakdown tests is generally anything but trivial and the comparison of breakdown results for different set-ups is difficult, especially because not all scientific articles go into detail on the measurement method and all the important parameters, which can influence the breakdown event. For the results shown in this work we mainly used glass as a suitable model material and two different electrode setups at eleven different voltage ramps in the range of 5 V/s to 10,000 V/s. We found that there is a clear dependence of the dielectric breakdown strength on the voltage ramp and the electrode configuration as well as it should be distinguished between breakdowns which initiated at electrode edge and those initiated within the electrode area. There is almost no scatter for breakdown strengths which were initiated inside a silver paste electrode in comparison to breakdown strength from the electrode edges.de_DE
tuhh.publisher.doi10.1016/j.jeurceramsoc.2020.09.060-
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.3239-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume41de_DE
tuhh.container.startpage1332de_DE
tuhh.container.endpage1341de_DE
dc.relation.projectAnalyse der Mechanismen des dielektrischen Durchschlags in keramischen Werkstoffende_DE
dc.relation.projectSFB 986: Teilprojekt A3 - Herstellung höherer hierarchischer Ebenen von Materialsystemen mit der Wirbelschicht-granulation und Diskrete-Elemente-Modellierung der Materialiende_DE
dc.relation.projectSFB 986: Teilprojekt A4 - Ab-initio basierende Modellierung und Beeinflussung der mechanischen Eigenschaften von Hybridgrenzflächende_DE
dc.relation.projectSFB 986: Teilprojekt A6 - Herstellung und Charakterisierung hierarchischer, multi-funktionaler Keramik/Metall-Polymer Materialsystemede_DE
dc.relation.projectSFB 986: Teilprojekt A8 - Molekulardynamische Simulation der Selbstassemblierung von polymerbeschichteten keramischen Nanopartikelnde_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85092078396de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThis work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under project number SCHN-372/17-2 and SFB 986.de_DE
item.creatorOrcidFischer, Pia-Kristina-
item.creatorOrcidSchneider, Gerold A.-
item.languageiso639-1en-
item.creatorGNDFischer, Pia-Kristina-
item.creatorGNDSchneider, Gerold A.-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.mappedtypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0002-2644-0747-
crisitem.author.orcid0000-0001-5780-6249-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoSCHN 372/17-2-
crisitem.project.grantno192346071-
crisitem.project.grantno192346071-
crisitem.project.grantno192346071-
crisitem.project.grantno192346071-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1-s2.0-S0955221920307871-main.pdfVerlagsversion4,6 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

130
Last Week
5
Last month
0
checked on Jan 20, 2022

Download(s)

55
checked on Jan 20, 2022

SCOPUSTM   
Citations

1
Last Week
0
Last month
1
checked on Jan 20, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons