Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3048
DC FieldValueLanguage
dc.contributor.authorClarke, Andrew T.-
dc.contributor.authorDavies, Christopher J.-
dc.contributor.authorRuprecht, Daniel-
dc.contributor.authorTobias, Steven M.-
dc.contributor.authorOishi, Jeffrey S.-
dc.date.accessioned2020-11-04T11:12:03Z-
dc.date.available2020-11-04T11:12:03Z-
dc.date.issued2020-09-23-
dc.identifier.citationComputing and Visualization in Science 1-4 (23): 10 (2020)de_DE
dc.identifier.issn1433-0369de_DE
dc.identifier.urihttp://hdl.handle.net/11420/7761-
dc.description.abstract© 2020, The Author(s). Rayleigh–Bénard convection (RBC) is a fundamental problem of fluid dynamics, with many applications to geophysical, astrophysical, and industrial flows. Understanding RBC at parameter regimes of interest requires complex physical or numerical experiments. Numerical simulations require large amounts of computational resources; in order to more efficiently use the large numbers of processors now available in large high performance computing clusters, novel parallelisation strategies are required. To this end, we investigate the performance of the parallel-in-time algorithm Parareal when used in numerical simulations of RBC. We present the first parallel-in-time speedups for RBC simulations at finite Prandtl number. We also investigate the problem of convergence of Parareal with respect to statistical numerical quantities, such as the Nusselt number, and discuss the importance of reliable online stopping criteria in these cases.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.relation.ispartofComputing and visualization in sciencede_DE
dc.rightsCC BY 4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectParallel-in-timede_DE
dc.subjectPararealde_DE
dc.subjectRayleigh–Bénardde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titlePerformance of parallel-in-time integration for Rayleigh Bénard convectionde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3048-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0111730-
tuhh.oai.showtruede_DE
tuhh.abstract.english© 2020, The Author(s). Rayleigh–Bénard convection (RBC) is a fundamental problem of fluid dynamics, with many applications to geophysical, astrophysical, and industrial flows. Understanding RBC at parameter regimes of interest requires complex physical or numerical experiments. Numerical simulations require large amounts of computational resources; in order to more efficiently use the large numbers of processors now available in large high performance computing clusters, novel parallelisation strategies are required. To this end, we investigate the performance of the parallel-in-time algorithm Parareal when used in numerical simulations of RBC. We present the first parallel-in-time speedups for RBC simulations at finite Prandtl number. We also investigate the problem of convergence of Parareal with respect to statistical numerical quantities, such as the Nusselt number, and discuss the importance of reliable online stopping criteria in these cases.de_DE
tuhh.publisher.doi10.1007/s00791-020-00332-3-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.3048-
tuhh.type.opus(wissenschaftlicher) Artikel-
openaire.funder.nameECde_DE
openaire.funder.programmeH2020de_DE
openaire.funder.projectidD5S-DLV-786780de_DE
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue1-4de_DE
tuhh.container.volume23de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85091492577de_DE
tuhh.container.articlenumber10de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoEngineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Fluid Dynamicsde_DE
local.funding.infoNatural Environment Research Council (NERC) Independent Research Fellowshipde_DE
local.funding.infoNASA LWSde_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorOrcidClarke, Andrew T.-
item.creatorOrcidDavies, Christopher J.-
item.creatorOrcidRuprecht, Daniel-
item.creatorOrcidTobias, Steven M.-
item.creatorOrcidOishi, Jeffrey S.-
item.mappedtypeArticle-
item.creatorGNDClarke, Andrew T.-
item.creatorGNDDavies, Christopher J.-
item.creatorGNDRuprecht, Daniel-
item.creatorGNDTobias, Steven M.-
item.creatorGNDOishi, Jeffrey S.-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2128-0016-
crisitem.author.orcid0000-0003-1904-2473-
crisitem.author.orcid0000-0003-0205-7716-
crisitem.author.orcid0000-0001-8531-6570-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Clarke2020_Article_PerformanceOfParallel-in-timeI.pdfVerlags-PDF998,48 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

142
Last Week
0
Last month
4
checked on Aug 8, 2022

Download(s)

74
checked on Aug 8, 2022

SCOPUSTM   
Citations

2
Last Week
0
Last month
0
checked on Jul 11, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons