Verlagslink DOI: 10.7169/facm/1861
Titel: Vector-valued holomorphic functions in several variables
Sprache: Englisch
Autor/Autorin: Kruse, Karsten  
Schlagwörter: vector-valued; holomorphic; weakly holomorphic; several variables; locally complete
Erscheinungs­datum: 2020
Verlag: Adam Mickiewicz University, Faculty of Mathematics and Computer Science
Quellenangabe: Functiones et Approximatio Commentarii Mathematici 63 (2): 247-275 (2020)
Zusammenfassung (englisch): 
In the present paper we give some explicit proofs for folklore theorems on holomorphic functions in several variables with values in a locally complete locally convex Hausdorff space E over C. Most of the literature on vector-valued holomorphic functions is either devoted to the case of one variable or to infinitely many variables whereas the case of (finitely many) several variables is only touched or is subject to stronger restrictions on the completeness of E like sequential completeness. The main tool we use is Cauchy's integral formula for derivatives for an E-valued holomorphic function in several variables which we derive via Pettis-integration. This allows us to generalise the known integral formula, where usually a Riemann-integral is used, from sequentially complete E to locally complete E. Among the classical theorems for holomorphic functions in several variables with values in a locally complete space E we prove are the identity theorem, Liouville's theorem, Riemann's removable singularities theorem and the density of the polynomials in the E-valued polydisc algebra.
URI: http://hdl.handle.net/11420/7838
ISSN: 0208-6573
Zeitschrift: Functiones et approximatio 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

86
Letzte Woche
0
Letzten Monat
2
checked on 01.10.2022

SCOPUSTM   
Zitate

2
Letzte Woche
0
Letzten Monat
0
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.