Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.4116
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kühl, Niklas | - |
dc.contributor.author | Müller, Peter Marvin | - |
dc.contributor.author | Rung, Thomas | - |
dc.date.accessioned | 2020-11-24T16:52:25Z | - |
dc.date.available | 2020-11-24T16:52:25Z | - |
dc.date.issued | 2021-03-15 | - |
dc.identifier.citation | Physics of Fluids 33 (3): 033608 (2021) | de_DE |
dc.identifier.issn | 1089-7666 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/7940 | - |
dc.description.abstract | The manuscript is concerned with a continuous adjoint complement to two-dimensional, incompressible, first-order boundary-layer equations for a flat plate boundary-layer. The text is structured into three parts. The first part demonstrates, that the adjoint complement can be derived in two ways, either following a first simplify then derive or a first derive and then simplify strategy. The simplification step comprises the classical boundary-layer (b.-l.) approximation and the derivation step transfers the primal flow equation into a companion adjoint equation. The second part of the paper comprises the analyses of the coupled primal/adjoint b.-l. framework. This leads to similarity parameters, which turn the Partial-Differential-Equation (PDE) problem into a boundary value problem described by a set of Ordinary-Differential-Equations (ODE) and support the formulation of an adjoint complement to the classical Blasius equation. Opposite to the primal Blasius equation, its adjoint complement consists of two ODEs which can be simplified depending on the treatment of advection. It is shown, that the advective fluxes, which are frequently debated in the literature, vanish for the investigated self-similar b.l. flows. Differences between the primal and the adjoint Blasius framework are discussed against numerical solutions, and analytical expressions are derived for the adjoint b.-l. thickness, wall shear stress and subordinated skin friction and drag coefficients. The analysis also provides an analytical expression for the shape sensitivity to shear driven drag objectives. The third part assesses the predictive agreement between the different Blasius solutions and numerical results for Navier-Stokes simulations of a flat plate b.-l. at Reynolds numbers between 1E+03 <= ReL <= 1E+05 . | en |
dc.language.iso | en | de_DE |
dc.publisher | American Institute of Physics | de_DE |
dc.relation.ispartof | Physics of fluids | de_DE |
dc.rights | CC BY 4.0 | de_DE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de_DE |
dc.subject | Physics - Fluid Dynamics | de_DE |
dc.subject | Mathematics - Optimization and Control | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.subject.ddc | 530: Physik | de_DE |
dc.title | Continuous adjoint complement to the Blasius equation | de_DE |
dc.type | Article | de_DE |
dc.identifier.doi | 10.15480/882.4116 | - |
dc.type.dini | article | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0114307 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.english | This manuscript is concerned with a continuous adjoint complement to two-dimensional, incompressible, first-order boundary-layerequations for a flat plate boundary layer. The text is structured into three parts. The first part demonstrates that the adjoint complement canbe derived in two ways, following either afirst simplify then deriveor afirst derive and then simplifystrategy. The simplification stepcomprises the classical boundary-layer (BL) approximation, and the derivation step transfers the primal flow equation into a companionadjoint equation. The second part of the paper comprises the analyses of the coupled primal/adjoint BL framework. This leads to similarityparameters, which turn the partial-differential-equation (PDE) problem into a boundary value problem described by a set of ordinary-differential-equations (ODEs) and support the formulation of an adjoint complement to the classical Blasius equation. Opposite to the primalBlasius equation, its adjoint complement consists of two ODEs, which can be simplified depending on the treatment of advection. It is shownthat the advective fluxes, which are frequently debated in the literature, vanish for the investigated self-similar BL flows. Differences betweenthe primal and the adjoint Blasius framework are discussed against numerical solutions, and analytical expressions are derived for the adjointBL thickness, wall shear stress, and subordinated skin friction and drag coefficients. The analysis also provides an analytical expression forthe shape sensitivity to shear driven drag objectives. The third part assesses the predictive agreement between the different Blasius solutionsand numerical results for Navier–Stokes simulations of a flat plate BL at Reynolds numbers between 103 ReL 105. It is seen that thereversal of the inlet and outlet locations and the direction of the flow, inherent to the adjoint formulation of convective kinematics, poses achallenge when investigating real finite length (finiteRe-number) flat plate boundary layer problems. Efforts to bypass related issues arediscussed. | de_DE |
tuhh.publisher.doi | 10.1063/5.0037779 | - |
tuhh.publication.institute | Fluiddynamik und Schiffstheorie M-8 | de_DE |
tuhh.identifier.doi | 10.15480/882.4116 | - |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
dc.type.driver | article | - |
dc.type.casrai | Journal Article | - |
tuhh.container.issue | 3 | de_DE |
tuhh.container.volume | 33 | de_DE |
dc.relation.project | Hydrodynamische Widerstandsoptimierung von Schiffsrümpfen | de_DE |
dc.relation.project | Weiterentwicklung von praxistauglichen simulationsbasierten Methoden zur Verbesserung der Leistungsfähigkeit von Schiffen mittels Formoptimierung | de_DE |
dc.relation.project | Modellierung, Simulation und Optimierung mit fluiddynamischen Anwendungen | de_DE |
dc.rights.nationallicense | false | de_DE |
dc.identifier.arxiv | 2011.07583v1 | de_DE |
dc.identifier.scopus | 2-s2.0-85102771972 | de_DE |
tuhh.container.articlenumber | 033608 | de_DE |
local.status.inpress | true | de_DE |
dc.rights.creditline | “Copyright (2021) Author(s) Niklas Kühl, Peter Marvin Müller and Thomas Rung; . This article is distributed under a Creative Commons Attribution (CC BY) License.” | de_DE |
local.type.version | publishedVersion | de_DE |
datacite.resourceType | Article | - |
datacite.resourceTypeGeneral | JournalArticle | - |
item.mappedtype | Article | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.creatorOrcid | Kühl, Niklas | - |
item.creatorOrcid | Müller, Peter Marvin | - |
item.creatorOrcid | Rung, Thomas | - |
item.creatorGND | Kühl, Niklas | - |
item.creatorGND | Müller, Peter Marvin | - |
item.creatorGND | Rung, Thomas | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
crisitem.project.funder | Deutsche Forschungsgemeinschaft (DFG) | - |
crisitem.project.funder | Bundesministerium für Wirtschaft und Klimaschutz (BMWK) | - |
crisitem.project.funder | Deutsche Forschungsgemeinschaft (DFG) | - |
crisitem.project.funderid | 501100001659 | - |
crisitem.project.funderid | 501100006360 | - |
crisitem.project.funderid | 501100001659 | - |
crisitem.project.funderrorid | 018mejw64 | - |
crisitem.project.funderrorid | 02vgg2808 | - |
crisitem.project.funderrorid | 018mejw64 | - |
crisitem.project.grantno | RU 1575/3-1 | - |
crisitem.project.grantno | 03SX453B | - |
crisitem.project.grantno | GRK 2583/1 | - |
crisitem.project.fundingProgram | GRK 2583 | - |
crisitem.author.dept | Fluiddynamik und Schiffstheorie M-8 | - |
crisitem.author.dept | Fluiddynamik und Schiffstheorie M-8 | - |
crisitem.author.dept | Fluiddynamik und Schiffstheorie M-8 | - |
crisitem.author.orcid | 0000-0002-4229-1358 | - |
crisitem.author.orcid | 0000-0003-0369-1196 | - |
crisitem.author.orcid | 0000-0002-3454-1804 | - |
crisitem.author.parentorg | Studiendekanat Maschinenbau | - |
crisitem.author.parentorg | Studiendekanat Maschinenbau | - |
crisitem.author.parentorg | Studiendekanat Maschinenbau | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
5.0037779.pdf | Verlagsversion | 2,47 MB | Adobe PDF | View/Open![]() |
Page view(s)
217
Last Week
0
0
Last month
2
2
checked on Feb 3, 2023
Download(s)
88
checked on Feb 3, 2023
SCOPUSTM
Citations
2
Last Week
0
0
Last month
0
0
checked on Jun 30, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License