Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3173
DC FieldValueLanguage
dc.contributor.authorKruse, Karsten-
dc.date.accessioned2021-04-13T08:07:57Z-
dc.date.available2021-04-13T08:07:57Z-
dc.date.issued2021-02-
dc.identifier.citationMathematische Nachrichten 294 (2): 354-376 (2021-02)de_DE
dc.identifier.issn1522-2616de_DE
dc.identifier.urihttp://hdl.handle.net/11420/8148-
dc.description.abstractIt is a classical result that every (Formula presented.) -valued holomorphic function has a local power series representation. This even remains true for holomorphic functions with values in a locally complete locally convex Hausdorff space E over (Formula presented.). Motivated by this example we try to answer the following question. Let E be a locally convex Hausdorff space over a field (Formula presented.), let (Formula presented.) be a locally convex Hausdorff space of (Formula presented.) -valued functions on a set Ω and let (Formula presented.) be an E-valued counterpart of (Formula presented.) (where the term E-valued counterpart needs clarification itself). For which spaces is it possible to lift series representations of elements of (Formula presented.) to elements of (Formula presented.) ? We derive sufficient conditions for the answer to be affirmative using Schauder decompositions which are applicable for many classical spaces of functions (Formula presented.) having an equicontinuous Schauder basis.en
dc.language.isoende_DE
dc.publisherWiley-VCHde_DE
dc.relation.ispartofMathematische Nachrichtende_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectinjective tensor productde_DE
dc.subjectSchauder basisde_DE
dc.subjectSchauder decompositionde_DE
dc.subjectseries representationde_DE
dc.subjectvector-valued functionde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleSeries representations in spaces of vector-valued functions via Schauder decompositionsde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3173-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0117389-
tuhh.oai.showtruede_DE
tuhh.abstract.englishIt is a classical result that every (Formula presented.) -valued holomorphic function has a local power series representation. This even remains true for holomorphic functions with values in a locally complete locally convex Hausdorff space E over (Formula presented.). Motivated by this example we try to answer the following question. Let E be a locally convex Hausdorff space over a field (Formula presented.), let (Formula presented.) be a locally convex Hausdorff space of (Formula presented.) -valued functions on a set Ω and let (Formula presented.) be an E-valued counterpart of (Formula presented.) (where the term E-valued counterpart needs clarification itself). For which spaces is it possible to lift series representations of elements of (Formula presented.) to elements of (Formula presented.) ? We derive sufficient conditions for the answer to be affirmative using Schauder decompositions which are applicable for many classical spaces of functions (Formula presented.) having an equicontinuous Schauder basis.de_DE
tuhh.publisher.doi10.1002/mana.201900172-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.3173-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume294de_DE
tuhh.container.startpage354de_DE
tuhh.container.endpage376de_DE
dc.relation.projectProjekt DEAL-
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85096915034de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.creatorGNDKruse, Karsten-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.creatorOrcidKruse, Karsten-
item.mappedtypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-1864-4915-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
mana.201900172-3.pdfVerlags PDF295,93 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

124
Last Week
1
Last month
5
checked on Aug 17, 2022

Download(s)

77
checked on Aug 17, 2022

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
checked on Jun 29, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons