Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.3173
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kruse, Karsten | - |
dc.date.accessioned | 2021-04-13T08:07:57Z | - |
dc.date.available | 2021-04-13T08:07:57Z | - |
dc.date.issued | 2021-02 | - |
dc.identifier.citation | Mathematische Nachrichten 294 (2): 354-376 (2021-02) | de_DE |
dc.identifier.issn | 1522-2616 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/8148 | - |
dc.description.abstract | It is a classical result that every (Formula presented.) -valued holomorphic function has a local power series representation. This even remains true for holomorphic functions with values in a locally complete locally convex Hausdorff space E over (Formula presented.). Motivated by this example we try to answer the following question. Let E be a locally convex Hausdorff space over a field (Formula presented.), let (Formula presented.) be a locally convex Hausdorff space of (Formula presented.) -valued functions on a set Ω and let (Formula presented.) be an E-valued counterpart of (Formula presented.) (where the term E-valued counterpart needs clarification itself). For which spaces is it possible to lift series representations of elements of (Formula presented.) to elements of (Formula presented.) ? We derive sufficient conditions for the answer to be affirmative using Schauder decompositions which are applicable for many classical spaces of functions (Formula presented.) having an equicontinuous Schauder basis. | en |
dc.language.iso | en | de_DE |
dc.publisher | Wiley-VCH | de_DE |
dc.relation.ispartof | Mathematische Nachrichten | de_DE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de_DE |
dc.subject | injective tensor product | de_DE |
dc.subject | Schauder basis | de_DE |
dc.subject | Schauder decomposition | de_DE |
dc.subject | series representation | de_DE |
dc.subject | vector-valued function | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | Series representations in spaces of vector-valued functions via Schauder decompositions | de_DE |
dc.type | Article | de_DE |
dc.identifier.doi | 10.15480/882.3173 | - |
dc.type.dini | article | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0117389 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.english | It is a classical result that every (Formula presented.) -valued holomorphic function has a local power series representation. This even remains true for holomorphic functions with values in a locally complete locally convex Hausdorff space E over (Formula presented.). Motivated by this example we try to answer the following question. Let E be a locally convex Hausdorff space over a field (Formula presented.), let (Formula presented.) be a locally convex Hausdorff space of (Formula presented.) -valued functions on a set Ω and let (Formula presented.) be an E-valued counterpart of (Formula presented.) (where the term E-valued counterpart needs clarification itself). For which spaces is it possible to lift series representations of elements of (Formula presented.) to elements of (Formula presented.) ? We derive sufficient conditions for the answer to be affirmative using Schauder decompositions which are applicable for many classical spaces of functions (Formula presented.) having an equicontinuous Schauder basis. | de_DE |
tuhh.publisher.doi | 10.1002/mana.201900172 | - |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.3173 | - |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
dc.type.driver | article | - |
dc.type.casrai | Journal Article | - |
tuhh.container.issue | 2 | de_DE |
tuhh.container.volume | 294 | de_DE |
tuhh.container.startpage | 354 | de_DE |
tuhh.container.endpage | 376 | de_DE |
dc.relation.project | Projekt DEAL | - |
dc.rights.nationallicense | false | de_DE |
dc.identifier.scopus | 2-s2.0-85096915034 | de_DE |
local.status.inpress | false | de_DE |
local.type.version | publishedVersion | de_DE |
datacite.resourceType | Journal Article | - |
datacite.resourceTypeGeneral | Text | - |
item.languageiso639-1 | en | - |
item.creatorGND | Kruse, Karsten | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.creatorOrcid | Kruse, Karsten | - |
item.mappedtype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0003-1864-4915 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
mana.201900172-3.pdf | Verlags PDF | 295,93 kB | Adobe PDF | View/Open![]() |
Page view(s)
124
Last Week
1
1
Last month
5
5
checked on Aug 17, 2022
Download(s)
77
checked on Aug 17, 2022
SCOPUSTM
Citations
1
Last Week
0
0
Last month
0
0
checked on Jun 29, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License