DC Field | Value | Language |
---|---|---|
dc.contributor.author | Venzke, Marcus | - |
dc.contributor.author | Klisch, Daniel | - |
dc.contributor.author | Kubik, Philipp | - |
dc.contributor.author | Ali, Asad | - |
dc.contributor.author | Dell Missier, Jesper | - |
dc.contributor.author | Turau, Volker | - |
dc.date.accessioned | 2020-12-18T11:36:45Z | - |
dc.date.available | 2020-12-18T11:36:45Z | - |
dc.date.issued | 2020-12-15 | - |
dc.identifier.citation | arXiv: 2012.08403v1 (2020) | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/8295 | - |
dc.description.abstract | In this paper we investigate the usage of machine learning for interpreting measured sensor values in sensor modules. In particular we analyze the potential of artificial neural networks (ANNs) on low-cost micro-controllers with a few kilobytes of memory to semantically enrich data captured by sensors. The focus is on classifying temporal data series with a high level of reliability. Design and implementation of ANNs are analyzed considering Feed Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs). We validate the developed ANNs in a case study of optical hand gesture recognition on an 8-bit micro-controller. The best reliability was found for an FFNN with two layers and 1493 parameters requiring an execution time of 36 ms. We propose a workflow to develop ANNs for embedded devices. | en |
dc.language.iso | en | de_DE |
dc.subject | Computer Science - Learning | de_DE |
dc.subject | Computer Science - Learning | de_DE |
dc.subject | Computer Science - Neural and Evolutionary Computing | de_DE |
dc.subject | Machine Learning | de_DE |
dc.subject | Artificial Neural Networks | de_DE |
dc.subject | Embedded Systems | de_DE |
dc.subject | Hand Gesture Recognition | de_DE |
dc.subject.ddc | 000: Allgemeines, Wissenschaft | de_DE |
dc.title | Artificial Neural Networks for Sensor Data Classification on Small Embedded Systems | de_DE |
dc.type | Preprint | de_DE |
dc.type.dini | preprint | - |
dcterms.DCMIType | Text | - |
tuhh.abstract.english | In this paper we investigate the usage of machine learning for interpreting measured sensor values in sensor modules. In particular we analyze the potential of artificial neural networks (ANNs) on low-cost micro-controllers with a few kilobytes of memory to semantically enrich data captured by sensors. The focus is on classifying temporal data series with a high level of reliability. Design and implementation of ANNs are analyzed considering Feed Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs). We validate the developed ANNs in a case study of optical hand gesture recognition on an 8-bit micro-controller. The best reliability was found for an FFNN with two layers and 1493 parameters requiring an execution time of 36 ms. We propose a workflow to develop ANNs for embedded devices. | de_DE |
tuhh.publication.institute | Telematik E-17 | de_DE |
tuhh.type.opus | Preprint (Vorabdruck) | - |
dc.type.driver | preprint | - |
dc.type.casrai | Other | - |
dc.identifier.arxiv | 2012.08403v1 | de_DE |
local.status.inpress | false | de_DE |
datacite.resourceType | Other | - |
datacite.resourceTypeGeneral | Text | - |
item.creatorOrcid | Venzke, Marcus | - |
item.creatorOrcid | Klisch, Daniel | - |
item.creatorOrcid | Kubik, Philipp | - |
item.creatorOrcid | Ali, Asad | - |
item.creatorOrcid | Dell Missier, Jesper | - |
item.creatorOrcid | Turau, Volker | - |
item.grantfulltext | none | - |
item.creatorGND | Venzke, Marcus | - |
item.creatorGND | Klisch, Daniel | - |
item.creatorGND | Kubik, Philipp | - |
item.creatorGND | Ali, Asad | - |
item.creatorGND | Dell Missier, Jesper | - |
item.creatorGND | Turau, Volker | - |
item.mappedtype | Preprint | - |
item.openairecristype | http://purl.org/coar/resource_type/c_816b | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Preprint | - |
crisitem.author.dept | Telematik E-17 | - |
crisitem.author.dept | Telematik E-17 | - |
crisitem.author.orcid | 0000-0002-3586-5878 | - |
crisitem.author.orcid | 0000-0001-9964-8816 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik (E) | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik (E) | - |
Appears in Collections: | Publications without fulltext |
Add Files to Item
Note about this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.