DC FieldValueLanguage
dc.contributor.authorForgács, Attila-
dc.contributor.authorPapp, Vanda-
dc.contributor.authorPaul, Geo-
dc.contributor.authorMarchese, Leonardo-
dc.contributor.authorLen, Adél-
dc.contributor.authorDudás, Zoltán-
dc.contributor.authorFábián, István-
dc.contributor.authorGurikov, Pavel-
dc.contributor.authorKalmár, József-
dc.date.accessioned2021-02-11T13:52:21Z-
dc.date.available2021-02-11T13:52:21Z-
dc.date.issued2021-01-20-
dc.identifier.citationACS Applied Materials and Interfaces 2 (13): 2997-3010 (2021-01-20)de_DE
dc.identifier.issn1944-8244de_DE
dc.identifier.urihttp://hdl.handle.net/11420/8768-
dc.description.abstractThe most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.en
dc.language.isoende_DE
dc.relation.ispartofACS applied materials & interfacesde_DE
dc.subjectaerogelde_DE
dc.subjecthydrationde_DE
dc.subjectNMRde_DE
dc.subjectSANSde_DE
dc.subjectstructural characterizationde_DE
dc.titleMechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogelde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishThe most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.de_DE
tuhh.publisher.doi10.1021/acsami.0c17012-
tuhh.publication.instituteEntwicklung und Modellierung neuartiger nanoporöser Materialien V-EXK2de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume13de_DE
tuhh.container.startpage2997de_DE
tuhh.container.endpage3010de_DE
dc.relation.projectStofftransportprozesse bei der Herstellung von biopolymerbasierten Aerogelen: in situ Charakterisierung und Modellierungde_DE
dc.identifier.pmid33401895de_DE
dc.identifier.scopus2-s2.0-85099658235de_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.mappedtypeArticle-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.creatorOrcidForgács, Attila-
item.creatorOrcidPapp, Vanda-
item.creatorOrcidPaul, Geo-
item.creatorOrcidMarchese, Leonardo-
item.creatorOrcidLen, Adél-
item.creatorOrcidDudás, Zoltán-
item.creatorOrcidFábián, István-
item.creatorOrcidGurikov, Pavel-
item.creatorOrcidKalmár, József-
item.creatorGNDForgács, Attila-
item.creatorGNDPapp, Vanda-
item.creatorGNDPaul, Geo-
item.creatorGNDMarchese, Leonardo-
item.creatorGNDLen, Adél-
item.creatorGNDDudás, Zoltán-
item.creatorGNDFábián, István-
item.creatorGNDGurikov, Pavel-
item.creatorGNDKalmár, József-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoGU 1842/3-1-
crisitem.author.deptEntwicklung und Modellierung Neuartiger Nanoporöser Materialien V-EXK2-
crisitem.author.orcid0000-0002-0944-0016-
crisitem.author.orcid0000-0001-9191-1237-
crisitem.author.orcid0000-0002-4467-2912-
crisitem.author.orcid0000-0003-0598-243X-
crisitem.author.orcid0000-0002-2422-6106-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik (V)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

62
Last Week
0
Last month
4
checked on Feb 3, 2023

SCOPUSTM   
Citations

7
Last Week
0
Last month
0
checked on Jul 11, 2022

PubMed Central
Citations

1
Last Week
0
Last month
0
checked on Feb 3, 2023

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.