DC Field | Value | Language |
---|---|---|
dc.contributor.author | Haupt, Alexander | - |
dc.date.accessioned | 2021-04-20T08:06:13Z | - |
dc.date.available | 2021-04-20T08:06:13Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Journal of Integer Sequences 24 (3): 21.3.6 (2021) | de_DE |
dc.identifier.issn | 1530-7638 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/9335 | - |
dc.description.abstract | We first enumerate a generalization of domino towers that was proposed by Brown, which we call S-omino towers. We establish equations that the generating function must satisfy, and then apply the Lagrange inversion formula to find a closed formula for the number of towers. We also show a connection to generalized Dyck paths and describe an explicit bijection. Finally, we consider the set of row-convex k-omino towers, introduced by Brown, and calculate an exact generating function. | en |
dc.language.iso | en | de_DE |
dc.relation.ispartof | Journal of integer sequences | de_DE |
dc.subject | Bijection | de_DE |
dc.subject | Convex polyomino | de_DE |
dc.subject | Domino | de_DE |
dc.subject | Lagrange inversion | de_DE |
dc.title | Enumeration of s-omino towers and row-convex k-omino towers | de_DE |
dc.type | Article | de_DE |
dc.type.dini | article | - |
dcterms.DCMIType | Text | - |
tuhh.abstract.english | We first enumerate a generalization of domino towers that was proposed by Brown, which we call S-omino towers. We establish equations that the generating function must satisfy, and then apply the Lagrange inversion formula to find a closed formula for the number of towers. We also show a connection to generalized Dyck paths and describe an explicit bijection. Finally, we consider the set of row-convex k-omino towers, introduced by Brown, and calculate an exact generating function. | de_DE |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
dc.type.driver | article | - |
dc.type.casrai | Journal Article | - |
tuhh.container.issue | 3 | de_DE |
tuhh.container.volume | 24 | de_DE |
dc.identifier.scopus | 2-s2.0-85103838778 | - |
tuhh.container.articlenumber | 21.3.6 | de_DE |
datacite.resourceType | Journal Article | - |
datacite.resourceTypeGeneral | Text | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.creatorGND | Haupt, Alexander | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.creatorOrcid | Haupt, Alexander | - |
item.languageiso639-1 | en | - |
item.mappedtype | Article | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0003-1919-6325 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications without fulltext |
Add Files to Item
Note about this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.