DC FieldValueLanguage
dc.contributor.authorKamei, Hiroko-
dc.contributor.authorRuan, Haibo-
dc.date.accessioned2021-05-18T06:22:38Z-
dc.date.available2021-05-18T06:22:38Z-
dc.date.issued2021-04-08-
dc.identifier.citationSIAM Journal on Applied Dynamical Systems 20 (2): 636-670 (2021-04-08)de_DE
dc.identifier.issn1536-0040de_DE
dc.identifier.urihttp://hdl.handle.net/11420/9548-
dc.description.abstractFor a regular coupled cell network, synchrony subspaces are the polydiagonal subspaces that are invariant under the network adjacency matrix. The complete lattice of synchrony subspaces of an ncell regular network can be seen as an intersection of the partition lattice of n elements and a lattice of invariant subspaces of the associated adjacency matrix. We assign integer tuples with synchrony subspaces and use them for identifying equivalent synchrony subspaces to be merged. Based on this equivalence, the initial lattice of synchrony subspaces can be reduced to a lattice of synchrony subspaces which corresponds to a simple eigenvalue case discussed in our previous work. The result is a reduced lattice of synchrony subspaces, which affords a well-defined nonnegative integer index that leads to bifurcation analysis in regular coupled cell networks.en
dc.language.isoende_DE
dc.publisherSIAMde_DE
dc.relation.ispartofSIAM journal on applied dynamical systemsde_DE
dc.subjectCoupled cell networkde_DE
dc.subjectIndexde_DE
dc.subjectJordan normal formde_DE
dc.subjectLatticede_DE
dc.subjectSynchrony subspacesde_DE
dc.subject.ddc004: Informatikde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleReduced lattices of synchrony subspaces and their indicesde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishFor a regular coupled cell network, synchrony subspaces are the polydiagonal subspaces that are invariant under the network adjacency matrix. The complete lattice of synchrony subspaces of an ncell regular network can be seen as an intersection of the partition lattice of n elements and a lattice of invariant subspaces of the associated adjacency matrix. We assign integer tuples with synchrony subspaces and use them for identifying equivalent synchrony subspaces to be merged. Based on this equivalence, the initial lattice of synchrony subspaces can be reduced to a lattice of synchrony subspaces which corresponds to a simple eigenvalue case discussed in our previous work. The result is a reduced lattice of synchrony subspaces, which affords a well-defined nonnegative integer index that leads to bifurcation analysis in regular coupled cell networks.de_DE
tuhh.publisher.doi10.1137/20M1348832-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume20de_DE
tuhh.container.startpage636de_DE
tuhh.container.endpage670de_DE
dc.identifier.scopus2-s2.0-85105341464de_DE
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDKamei, Hiroko-
item.creatorGNDRuan, Haibo-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidKamei, Hiroko-
item.creatorOrcidRuan, Haibo-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-9696-9750-
crisitem.author.orcid0000-0002-2235-8033-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

32
Last Week
0
Last month
2
checked on Aug 17, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.