DC FieldValueLanguage
dc.contributor.authorLenz, Daniel-
dc.contributor.authorSeifert, Christian-
dc.contributor.authorStollmann, Peter-
dc.date.accessioned2021-05-20T09:55:14Z-
dc.date.available2021-05-20T09:55:14Z-
dc.date.issued2013-12-31-
dc.identifier.citationJournal of Differential Equations 256 (6): 1905-1926 (2014)de_DE
dc.identifier.issn1090-2732de_DE
dc.identifier.urihttp://hdl.handle.net/11420/9575-
dc.description.abstractWe study Schrödinger operators on R with measures as potentials. Choosing a suitable subset of measures we can work with a dynamical system consisting of measures. We then relate properties of this dynamical system with spectral properties of the associated operators. The constant spectrum in the strictly ergodic case coincides with the union of the zeros of the Lyapunov exponent and the set of non-uniformities of the transfer matrices. This result enables us to prove Cantor spectra of zero Lebesgue measure for a large class of operator families, including many operator families generated by aperiodic subshifts. © 2013 Elsevier Inc.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofJournal of differential equationsde_DE
dc.subjectCantor spectrum of measure zerode_DE
dc.subjectQuasicrystalsde_DE
dc.subjectSchrödinger operatorsde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleZero measure Cantor spectra for continuum one-dimensional quasicrystalsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishWe study Schrödinger operators on R with measures as potentials. Choosing a suitable subset of measures we can work with a dynamical system consisting of measures. We then relate properties of this dynamical system with spectral properties of the associated operators. The constant spectrum in the strictly ergodic case coincides with the union of the zeros of the Lyapunov exponent and the set of non-uniformities of the transfer matrices. This result enables us to prove Cantor spectra of zero Lebesgue measure for a large class of operator families, including many operator families generated by aperiodic subshifts. © 2013 Elsevier Inc.de_DE
tuhh.publisher.doi10.1016/j.jde.2013.12.003-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue6de_DE
tuhh.container.volume256de_DE
tuhh.container.startpage1905de_DE
tuhh.container.endpage1926de_DE
dc.identifier.scopus2-s2.0-84892482300de_DE
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDLenz, Daniel-
item.creatorGNDSeifert, Christian-
item.creatorGNDStollmann, Peter-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidLenz, Daniel-
item.creatorOrcidSeifert, Christian-
item.creatorOrcidStollmann, Peter-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

34
Last Week
0
Last month
4
checked on Aug 17, 2022

SCOPUSTM   
Citations

6
Last Week
0
Last month
0
checked on Jun 29, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.