Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3593
DC FieldValueLanguage
dc.contributor.authorSmits, Joeri-
dc.contributor.authorGiri, Rajendra P.-
dc.contributor.authorShen, Chen-
dc.contributor.authorMendonça, Diogo-
dc.contributor.authorMurphy, Bridget M.-
dc.contributor.authorHuber, Patrick-
dc.contributor.authorRezwan, Kurosch-
dc.contributor.authorMaas, Michael-
dc.date.accessioned2021-06-10T11:20:51Z-
dc.date.available2021-06-10T11:20:51Z-
dc.date.issued2021-04-27-
dc.identifier.citationLangmuir 37 (18): 5659-5672 (2021)de_DE
dc.identifier.issn1520-5827de_DE
dc.identifier.urihttp://hdl.handle.net/11420/9720-
dc.description.abstractFundamental insights into the interplay and self-assembly of nanoparticles and surface-active agents at the liquid-liquid interface play a pivotal role in understanding the ubiquitous colloidal systems present in our natural surroundings, including foods and aquatic life, and in the industry for emulsion stabilization, drug delivery, or enhanced oil recovery. Moreover, well-controlled model systems for mixed interfacial adsorption of nanoparticles and surfactants allow unprecedented insights into nonideal or contaminated particle-stabilized emulsions. Here, we investigate such a model system composed of hydrophilic, negatively, and positively charged silica nanoparticles and the oil-soluble cationic lipid octadecyl amine with in situ synchrotron-based X-ray reflectometry, which is analyzed and discussed jointly with dynamic interfacial tensiometry. Our results indicate that negatively charged silica nanoparticles only adsorb if the oil-water interface is covered with the positively charged lipid, indicating synergistic adsorption. Conversely, the positively charged nanoparticles readily adsorb on their own, but compete with octadecyl amine and reversibly desorb with increasing concentrations of the lipid. These results further indicate that with competitive adsorption, an electrostatic exclusion zone exists around the adsorbed particles. This prevents the adsorption of lipid molecules in this area, leading to a decreased surface excess concentration of surfactants and unexpectedly high interfacial tension.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.language.isoende_DE
dc.publisherACS Pubde_DE
dc.relation.ispartofLangmuir : the ACS journal of surfaces and colloidsde_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.subject.ddc530: Physikde_DE
dc.subject.ddc600: Technikde_DE
dc.titleSynergistic and competitive adsorption of hydrophilic nanoparticles and oil-soluble surfactants at the oil-water interfacede_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3593-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0137570-
tuhh.oai.showtruede_DE
tuhh.abstract.englishFundamental insights into the interplay and self-assembly of nanoparticles and surface-active agents at the liquid-liquid interface play a pivotal role in understanding the ubiquitous colloidal systems present in our natural surroundings, including foods and aquatic life, and in the industry for emulsion stabilization, drug delivery, or enhanced oil recovery. Moreover, well-controlled model systems for mixed interfacial adsorption of nanoparticles and surfactants allow unprecedented insights into nonideal or contaminated particle-stabilized emulsions. Here, we investigate such a model system composed of hydrophilic, negatively, and positively charged silica nanoparticles and the oil-soluble cationic lipid octadecyl amine with in situ synchrotron-based X-ray reflectometry, which is analyzed and discussed jointly with dynamic interfacial tensiometry. Our results indicate that negatively charged silica nanoparticles only adsorb if the oil-water interface is covered with the positively charged lipid, indicating synergistic adsorption. Conversely, the positively charged nanoparticles readily adsorb on their own, but compete with octadecyl amine and reversibly desorb with increasing concentrations of the lipid. These results further indicate that with competitive adsorption, an electrostatic exclusion zone exists around the adsorbed particles. This prevents the adsorption of lipid molecules in this area, leading to a decreased surface excess concentration of surfactants and unexpectedly high interfacial tension.de_DE
tuhh.publisher.doi10.1021/acs.langmuir.1c00559-
tuhh.publication.instituteMaterial- und Röntgenphysik M-2de_DE
tuhh.identifier.doi10.15480/882.3593-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue18de_DE
tuhh.container.volume37de_DE
tuhh.container.startpage5659de_DE
tuhh.container.endpage5672de_DE
dc.relation.projectSFB 986: Teilprojekt B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemende_DE
dc.relation.projectGraduiertenkolleg 2462: Prozesse in natürlichen und technischen Partikel-Fluid-Systemen (PintPFS)de_DE
dc.identifier.pmid33905659de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85106475749de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThe authors acknowledge research grant Verbundforschung BMBF/05KS7FK3/05KS10FK2 and Verbundforschung BMBF/05K16FK1 for financing LISA instrument and the Lambda GaAs detector, respectively. M.M. acknowledges support by DFG (Deutsche Forschungsgemeinschaft) project 278836263. P.H. acknowledges support by the DFG Graduate School GRK 2462 “Processes in natural and technical Particle-Fluid-Systems (PintPFS)” (Project number 390794421).de_DE
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidSmits, Joeri-
item.creatorOrcidGiri, Rajendra P.-
item.creatorOrcidShen, Chen-
item.creatorOrcidMendonça, Diogo-
item.creatorOrcidMurphy, Bridget M.-
item.creatorOrcidHuber, Patrick-
item.creatorOrcidRezwan, Kurosch-
item.creatorOrcidMaas, Michael-
item.mappedtypeArticle-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.creatorGNDSmits, Joeri-
item.creatorGNDGiri, Rajendra P.-
item.creatorGNDShen, Chen-
item.creatorGNDMendonça, Diogo-
item.creatorGNDMurphy, Bridget M.-
item.creatorGNDHuber, Patrick-
item.creatorGNDRezwan, Kurosch-
item.creatorGNDMaas, Michael-
crisitem.author.deptMaterial- und Röntgenphysik M-2-
crisitem.author.orcid0000-0002-2126-9100-
crisitem.author.orcid0000-0002-7318-1119-
crisitem.author.orcid0000-0002-2352-4822-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantno192346071-
crisitem.project.grantnoGRK 2462/1 - 2019-
crisitem.funder.funderid501100001659-
crisitem.funder.funderrorid018mejw64-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
acs.langmuir.1c00559-1.pdfVerlags-PDF4,93 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

61
Last Week
21
Last month
checked on Jun 23, 2021

Download(s)

10
checked on Jun 23, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons