TUHH Open Research (TORE)https://tore.tuhh.deTORE captures, stores, indexes, preserves, and distributes digital research material.Sat, 10 Apr 2021 12:17:45 GMT2021-04-10T12:17:45Z50121- Evaluation and refinement of the novel predictive electrolyte model COSMO-RS-ES based on solid-liquid equilibria of salts and Gibbs free energies of transfer of ionshttp://hdl.handle.net/11420/2328Title: Evaluation and refinement of the novel predictive electrolyte model COSMO-RS-ES based on solid-liquid equilibria of salts and Gibbs free energies of transfer of ions
Authors: Müller, Simon; González de Castilla, Andrés; Taeschler, Christoph; Klein, Andreas; Smirnova, Irina
Abstract: The new predictive electrolyte model COSMO-RS-ES is evaluated and refined for the calculation of solubilities of salts in mixed solvent systems. It is demonstrated that the model is capable of predicting solid-liquid equilibria at 25 °C for ammonium and alkali metal salts quite accurately in a wide variety of solvent mixtures. Furthermore, through the introduction of Gibbs free energies of transfer of single ions it is shown that the model performance can be improved even further. This new data type also allows for an ion-specific way of evaluating the model for the first time. For some systems when calculating the solubility, larger deviations are observed, but for the vast majority of systems the model delivers good predictions. This shows that COSMO-RS-ES is a valuable tool for calculation of phase equilibria in electrolyte systems especially when the scarcity of data impede the application of models that require a higher number of parameters. © 2018 Elsevier B.V.
Tue, 16 Apr 2019 14:52:14 GMThttp://hdl.handle.net/11420/23282019-04-16T14:52:14Z
- On the analogy between the restricted primitive model and capacitor circuits: Semi-empirical alternatives for over- and underscreening in the calculation of mean ionic activity coefficientshttp://hdl.handle.net/11420/8538Title: On the analogy between the restricted primitive model and capacitor circuits: Semi-empirical alternatives for over- and underscreening in the calculation of mean ionic activity coefficients
Authors: González de Castilla, Andrés; Müller, Simon; Smirnova, Irina
Abstract: The analogy between the restricted primitive model and capacitor circuits, originally described decades ago for the Mean Spherical Approximation, is explored to demonstrate its transferability in linearized electrolyte theories. On this basis, we offer an explanation of why treating the salt diameter as a free adjustable parameter blurs differences between electrolyte theories in the calculation of mean ionic activity coefficients. Furthermore, a capacitor circuit analogy with an approximation of the Dressed Ion Theory is applied to develop a modified closest approach parameter “b” for the Pitzer-Debye-Hückel term. This modification is able to account for the qualitative effects of over- and underscreening in the calculation of mean ionic activity coefficients. This is achieved by defining “b” as a semi-empirical function that allows close resemblance with the multiple decay-length extension of the Debye-Hückel theory for high dielectric constant values and that lies close to recommended literature values of “b” for low dielectric constant values. Finally, as proof of principle, this modified semi-empirical Pitzer-Debye-Hückel term is implemented in the predictive COSMO-RS-ES model, an own reimplementation of the COSMO-RS theory developed for thermodynamic property calculations of electrolyte systems. It is shown that the modified semi-empirical Pitzer-Debye-Hückel term is an effective replacement for the recently published version of COSMO-RS-ES with explicit considerations for ion pairing. This reduces the modelling complexity by implicitly considering ion pairing and improves overall qualitative performance for the prediction of salt solubilities in mixed-solvent systems and even mean ionic activity coefficients in non-aqueous media.
Thu, 21 Jan 2021 12:18:36 GMThttp://hdl.handle.net/11420/85382021-01-21T12:18:36Z
- Extension of COSMO-RS for the prediction of the salt effect on liquid-liquid equilibriahttp://hdl.handle.net/11420/3011Title: Extension of COSMO-RS for the prediction of the salt effect on liquid-liquid equilibria
Authors: Gerlach, Thomas; Müller, Simon; Smirnova, Irina
Abstract: In vielen Prozessen, insbesondere im Bereich der Biotechnologie, stellen Salze einen natürlichen Bestandteil der Medien dar. Darüber hinaus kann durch die Hinzugabe von Salzen eine Extraktion aus wässrigen Medien auch für polare Komponenten ermöglicht werden. Die Modellierung von Phasengleichgewichten salzhaltiger Systeme ist dabei mit verschiedenen Modellen beschrieben worden. Für die meisten Modelle ist dabei eine Anpassung komponentenspezifischer Wechselwirkungsparameter an experimentelle Daten des Systems notwendig, allerdings liegen diese in vielen Fällen nicht vor.
COSMO-RS erlaubt als prädiktives gE-Modell die Vorhersage des Verteilungsverhaltens von Komponenten in verschiedensten Systemen, eine Bestimmung komponentenspezifischer Wechselwirkungsparameter ist dabei nicht erforderlich. In unserer Gruppe wurde bereits eine Erweiterung von COSMO-RS für Elektrolytsysteme entwickelt. Anhand einzelner Systeme wurde demonstriert, dass der Salzeffekt auf Flüssig-Flüssig-Phasengleichgewichte vorhergesagt werden kann [1]. Hierzu wurden, neben anderen Anpassungen, ionenspezifische Wechselwirkungsparameter in das Modell integriert. Diese wurden auf Grundlage von mittleren ionischen Aktivitätskoeffizienten in wässrigen Systemen parametrisiert.
In dieser Arbeit wurde dieser Modellierungsansatz auf Grundlage einer in unserer Gruppe durchgeführten Re-Implementierung des Modells COSMO-RS weiterentwickelt, so dass ein deutlich größeres Spektrum verschiedener Ionen erfolgreich in die Parametrisierung integriert werden konnte. Anschließend wurde das neue Modell auf Grundlage einer großen Datenbank von Flüssig-Flüssig Phasengleichgewichten salzhaltiger Systeme systematisch quantitativ bewertet. Die erstellte Datenbank enthielt Systeme mit verschiedenen Lösungsmitteln, wie Alkohole, Ester und Ketone. Auf Grundlage dieses Bewertungsschrittes wurden neue Ansätze zur verbesserten Beschreibung der Wechselwirkungen von Ionen entwickelt und auf Basis der Flüssig-Flüssig Phasengleichgewichte parametrisiert. Hierdurch konnte eine quantitativ deutlich genauere Berechnung der Phasengleichgewichte in Elektrolytsystemen erreicht werden. Insbesondere wurden Verbesserungen für Systeme erzielt, welche Alkohole enthielten. Das Modell erzielte dabei zufriedenstellende Vorhersagen auch für verschiedene quaternäre LLE Systeme.; In many processes, especially in the field of biotechnology, salts are a natural component of the media. Furthermore, the addition of salts allows extraction from aqueous media also for polar components. The modeling of phase equilibria of electrolyte systems has been described with different models. For most models a fitting of component-specific interaction parameters to experimental data of the system is necessary, but in many cases they are not available.
COSMO-RS, as a predictive gE-model, allows the prediction of the distribution behavior of components in different systems, a determination of component-specific interaction parameters is not necessary. An extension of COSMO-RS for electrolyte systems has already been developed in our group. Single systems have been used to demonstrate that the salt effect can be predicted on liquid-liquid phase equilibria [1]. In addition to other adjustments, ion-specific interaction parameters were integrated into the model. These were parameterized based on average ionic activity coefficients in aqueous systems.
In this work, this modeling approach was further developed based on a re-implementation of the COSMO-RS model in our group, so that a significantly larger spectrum of different ions could be successfully integrated into the parameterization. Subsequently, the new model was systematically assessed based on a large database of liquid-liquid phase equilibria of saline systems. The created database contained systems with various solvents, such as alcohols, esters and ketones. Based on this evaluation step, new approaches to improve the description of the interactions of ions have been developed and parametrized on the basis of liquid-liquid phase equilibria. This allowed a quantitatively much more accurate calculation of the phase equilibria in electrolyte systems. In particular, improvements have been achieved for systems containing alcohols. The model achieved good predictions for various quaternary LLE systems.
Tue, 23 Jul 2019 10:47:07 GMThttp://hdl.handle.net/11420/30112019-07-23T10:47:07Z
- Thermodynamic and transport properties modeling of deep eutectic solvents: a review on gE-models, equations of state, and molecular dynamicshttp://hdl.handle.net/11420/4275Title: Thermodynamic and transport properties modeling of deep eutectic solvents: a review on gE-models, equations of state, and molecular dynamics
Authors: González de Castilla, Andrés; Bittner, Jan Philipp; Müller, Simon; Jakobtorweihen, Sven; Smirnova, Irina
Abstract: Deep eutectic solvents (DESs) have gained attention in recent years as attractive alternatives to traditional solvents. There is a growing number of publications dealing with the thermodynamic modeling of DESs highlighting the importance of modeling the solutions' properties. In this review, we summarize the state-of-the-art in DES modeling as well as its current challenges. We also summarize the various modeling approaches to phase equilibria and properties of DESs with gE-models, equations of state (EOS), and molecular dynamics (MD) simulations. Most of the current gE-model and EOS-based approaches handle DESs as pseudocomponents in order to simplify the parametrizations and calculation strategies. However, for the models to become more transferable and predictive, it would be preferable to model the individual DES constituents instead of modeling it as pseudocomponent. This implies that validation with more detailed experimental data that includes the distribution of the DES components is also required. MD simulations, in contrast to gE-models and EOS, are capable of providing information about the liquid structure and can predict dynamic properties, although the latter quantities still show some imprecisions. Therefore, insights into the liquid structure of DES systems from MD could also aid in improving present modeling strategies in addition to allowing a better understanding. Finally, the latest developments for DES force fields are discussed as the quality of the applied force fields determines the results of the MD simulations.
Fri, 03 Jan 2020 12:15:58 GMThttp://hdl.handle.net/11420/42752020-01-03T12:15:58Z
- Artificial neural networks for quantitative online NMR spectroscopyhttp://hdl.handle.net/11420/7487Title: Artificial neural networks for quantitative online NMR spectroscopy
Authors: Kern, Simon; Liehr, Sascha; Wander, Lukas; Bornemann-Pfeiffer, Martin; Müller, Simon; Maiwald, Michael; Kowarik, Stefan
Abstract: Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. [Figure not available: see fulltext.].
Tue, 06 Oct 2020 12:45:57 GMThttp://hdl.handle.net/11420/74872020-10-06T12:45:57Z
- Development of a COSMO-RS based model for the calculation of phase equilibria in electrolyte systemshttp://hdl.handle.net/11420/2421Title: Development of a COSMO-RS based model for the calculation of phase equilibria in electrolyte systems
Authors: Gerlach, Thomas; Müller, Simon; Smirnova, Irina
Abstract: A new electrolyte model, which is based on the predictive thermodynamic model COSMO-RS, is presented. For this purpose, an implementation of COSMO-RS that allows the integration of multiple segment descriptors was developed. To aid in the development of the electrolyte model, a new technique is presented that allows the evaluation of the different contributions of the interaction terms of COSMO-RS to the partial molar enthalpies. General empirical interaction energy equations are introduced into the electrolyte model. They are parameterized based on a large training set of mean ionic activity coefficients as well as liquid–liquid equilibrium data close to ambient conditions. The model is shown to be capable of predicting properties of systems containing anions that were not part of the training set of the model. Furthermore, it is demonstrated that the model can also lead to satisfying predictions if compared to vapor–liquid equilibrium data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 272–285, 2018.
Thu, 25 Apr 2019 08:15:42 GMThttp://hdl.handle.net/11420/24212019-04-25T08:15:42Z
- Prediction of Solvation Free Energies of Ionic Solutes in Neutral Solventshttp://hdl.handle.net/11420/6404Title: Prediction of Solvation Free Energies of Ionic Solutes in Neutral Solvents
Authors: Kröger, Leif C.; Müller, Simon; Smirnova, Irina; Leonhard, Kai
Abstract: The prediction of solvation free energies is essential for a variety of applications. Solvation free energies of neutral systems can be predicted quite accurately. The accuracy of predictions for solvation free energies of ionic solutes dissolved in neutral solvents, however, has been reported to be worse by at least 1 order of magnitude. In this study, the performance of three approaches for solvation free energy prediction of several hundred ions dissolved in neutral solvents is evaluated. The applied methods are COSMO-RS, cluster continuum model (CCM) together with COSMO-RS, and COSMO-RS-ES. It is emphasized that the reference data for model evaluation are subject to large uncertainties stemming from the impossibility to measure the so-called elusive absolute free energies of solvation of a single ion. Consequently, such uncertainty must be considered during the evaluation of prediction methods. Therefore, a straightforward approach to account for the underlying uncertainty is applied here. Hereby, it is revealed that the true performance of the method is better than what is often reported. The average absolute deviation (AAD) of COSMO-RS is calculated to be 2.3 kcal mol-1, while applying the CCM and COSMO-RS-ES each results in AADs of 2.0 kcal mol-1. This accuracy allows for qualitative assessment of solvation free energy-dependent quantities, such as reaction rate constants.
Wed, 24 Jun 2020 06:06:30 GMThttp://hdl.handle.net/11420/64042020-06-24T06:06:30Z
- Influence of inorganic salts on the phase equilibrium of triton X-114 aqueous two-phase systemshttp://hdl.handle.net/11420/4986Title: Influence of inorganic salts on the phase equilibrium of triton X-114 aqueous two-phase systems
Authors: Ritter, Eric; Racheva, Ralena Rumenova; Storm, Sandra; Müller, Simon; Ingram, Thomas; Smirnova, Irina
Abstract: In this work, we studied the liquid-liquid equilibrium of ternary systems containing nonionic surfactant Triton X-114, inorganic salts, and water. The salt impact of five different sodium salts (NaCl, NaBr, NaI, Na2SO4, and Na2HPO4) and four different chlorides (NaCl, KCl, LiCl, NH4Cl) was investigated. The influence of the inorganic additives was studied at 30 °C because at this temperature all prepared mixtures faced a separation above the cloud point temperature (CPT) in micellar (surfactant-rich) and aqueous (surfactant-lean) phase. The salting-out ability of the cations follows the series Na+ > K+ > NH4+ > Li+. We observed a more pronounced effect among the anions, where the salting-out effect decreased in the order HPO42- ≈ SO42- > Cl- > Br- > I-. All salts, except NaI, lead to an increase in the Triton X-114 concentration in the micellar phase and to a decrease of the surfactant fraction in the aqueous phase. Inorganic salts also distributed unevenly between both phases and, thus, accumulated in the aqueous phase. In the case of stronger salting-out kosmotropic anions (HPO42-, SO42-), the salt load of water in the aqueous phase was higher compared to the weaker agents Br- and I-.
Thu, 20 Feb 2020 12:49:39 GMThttp://hdl.handle.net/11420/49862020-02-20T12:49:39Z
- Application and refinement of COSMO-RS-ES for calculating phase equilibria of electrolyte systems at high concentrations in mixed and non-aqueous solventshttp://hdl.handle.net/11420/7623Title: Application and refinement of COSMO-RS-ES for calculating phase equilibria of electrolyte systems at high concentrations in mixed and non-aqueous solvents
Authors: Müller, Simon
Abstract: Für ein effizientes Prozessdesign zur Einsparung von Ressourcen und Zeit oder für eine erste Schätzung zu Beginn der Entwicklung sind prädiktive thermodynamische Modelle ein Schlüsselinstrument. COSMO-RS ist eine effiziente Methode, mit der thermodynamische Eigenschaften vorhergesagt werden können, ohne dass binäre Interaktionsparameter erforderlich sind, die in vielen Fällen an experimentelle Daten angepasst werden müssen. Es wurde gezeigt, dass die Elektrolyterweiterung dieses Modells, nämlich COSMO-RS-ES, ein sehr vielseitiges Modell ist, das in der Lage ist, sehr unterschiedliche Phasengleichgewichte in Elektrolytsystemen vorherzusagen. Das Modell verwendet ein speziell modifiziertes COSMO-RS-Modell, um die kurzreichweitigen Wechselwirkungen der verschiedenen Spezies zu beschreiben, kombiniert mit dem Pitzer-Debye-Hückel-Modell, um die langreichweitigen ionischen Wechselwirkungen zu beschreiben.
In dieser Arbeit wurde das Modell erfolgreich erweitert, um die Löslichkeit anorganischer Salze in gemischten Lösungsmitteln und vollständig nichtwässrigen Systemen berechnen zu können. Es konnten einige systematische Abweichungen festgestellt werden, die auf den kurzreichweitigen bzw. den langreichweitigen Teil des Modells zurückzuführen sind.
Durch die Einbeziehung von freien Gibbs Transferenergien von Ionen in den Trainingssatz des Modells wurde die Beschreibung der kurzreichweitigen ionischen Wechselwirkungen verbessert, was eine bessere Vorhersage der Salzlöslichkeit in einer großen Bandbreite von Lösungsmitteln ermöglichte. Um auch die Wechselwirkungen des Modells über große Entfernungen zu verbessern, wurde der Einfluss der Verwendung der Lösungseigenschaften wie Permittivität und Dichte bewertet, was zu mehreren wichtigen Beobachtungen für diesen Teil des Modells führte. Da andere Modelle einen Born-Term enthalten, um die Ionensolvatisierung besser zu beschreiben, der im COSMO RS ES-Modell bisher nicht berücksichtigt wird, wurde diese Möglichkeit untersucht. Darüber hinaus wurde das Modell erweitert, um den Effekt der Ionenpaarung explizit zu beschreiben, der bei Systemen mit sehr geringer Permittivität eine herausragende Rolle spielt. Mit diesen Entwicklungen wurde die Vorhersagefähigkeit des Modells erheblich erweitert.
In dieser Arbeit werden zwei vollständig nichtwässrige Flüssig-Flüssig-Gleichgewichtssysteme und vier Fest-Flüssig-Gleichgewichte gemessen und mit COSMO-RS-ES modelliert, um die Funktionsweise des Modells für diese komplexen Systeme besser zu verstehen.
Schließlich wird das Modell von Grund auf neu parametrisiert, um die Vorhersage von pKa-Werten zu ermöglichen, wobei das Modell zum ersten Mal auf freie Solvatationsenergien angewendet wird.; For an efficient process design to save resources and time or for a first estimation during the beginning phase of the development, predictive thermodynamic models are a key tool. COSMO RS is an efficient method that allows prediction of thermodynamic properties without the need for binary interaction parameters which in many cases have to be adjusted to experimental data. The electrolyte extension of this model, namely COSMO RS ES, has been shown to be a very versatile model being capable of predicting very diverse phase equilibria in electrolyte systems. The model employs an especially modified COSMO RS model to describe the short-range interactions of the different species combined with the Pitzer-Debye-Hückel model to describe the long-range ionic interactions.
In this work, the model was successfully extended to be able to calculate solubilities of inorganic solvents in mixed-solvent and completely non-aqueous systems. Some systematic deviations could be found, which could be attributed to the short-range or the long-range part of the model respectively.
By including Gibbs free energies of transfer of ions into the training set of the model, the short-range description of the ionic interactions was improved, allowing for a better prediction of salt solubilities in a wide range of solvents. To also improve the long-range interactions of the model, the influence of using the solution properties such as permittivity and density was assessed leading to several important observations for this part of the model. As other models include a Born term to describe the ion solvation better, which so far is not considered within the COSMO RS ES model, this possibility is investigated. Furthermore, the model is enhanced to explicitly describe the effect of ion-pairing which becomes prominent for systems with a very low permittivity. With these developments, the predictive capabilities of the model are greatly advanced.
Two completely non-aqueous liquid-liquid equilibrium systems and four solid-liquid equilibria are measured and modelled with COSMO RS ES leading to a better understanding of how the model works for these complex systems.
Finally, the model is reparametrized from the ground up to allow prediction of pKa values, applying the model to free solvation energies for the first time.
Fri, 20 Nov 2020 09:50:41 GMThttp://hdl.handle.net/11420/76232020-11-20T09:50:41Z
- Flexible heuristic algorithm for automatic molecule fragmentation : application to the UNIFAC group contribution modelhttp://hdl.handle.net/11420/3353Title: Flexible heuristic algorithm for automatic molecule fragmentation : application to the UNIFAC group contribution model
Authors: Müller, Simon
Abstract: A priori calculation of thermophysical properties and predictive thermodynamic models can be very helpful for developing new industrial processes. Group contribution methods link the target property to contributions based on chemical groups or other molecular subunits of a given molecule. However, the fragmentation of the molecule into its subunits is usually done manually impeding the fast testing and development of new group contribution methods based on large databases of molecules. The aim of this work is to develop strategies to overcome the challenges that arise when attempting to fragment molecules automatically while keeping the definition of the groups as simple as possible. Furthermore, these strategies are implemented in two fragmentation algorithms. The first algorithm finds only one solution while the second algorithm finds all possible fragmentations. Both algorithms are tested to fragment a database of 20,000+ molecules for use with the group contribution model Universal Quasichemical Functional Group Activity Coefficients (UNIFAC). Comparison of the results with a reference database shows that both algorithms are capable of successfully fragmenting all the molecules automatically. Furthermore, when applying them on a larger database it is shown, that the newly developed algorithms are capable of fragmenting structures previously thought not possible to fragment.
Thu, 12 Sep 2019 13:24:15 GMThttp://hdl.handle.net/11420/33532019-09-12T13:24:15Z
- Calculation of thermodynamic equilibria with the predictive electrolyte model COSMO-RS-ES: Improvements for low permittivity systemshttp://hdl.handle.net/11420/3764Title: Calculation of thermodynamic equilibria with the predictive electrolyte model COSMO-RS-ES: Improvements for low permittivity systems
Authors: Müller, Simon; González de Castilla, Andrés; Taeschler, Christoph; Klein, Andreas; Smirnova, Irina
Abstract: The predictive electrolyte model COSMO-RS-ES is refined to improve the description of systems at 25 °C in which strong ion pairing is expected due to a low static permittivity of the liquid phase. Furthermore, the short-range ion energy interaction equations have been modified to better describe the interactions between ions and solvent molecules. In addition, the salt solubility database is extended with additional non-aqueous systems containing solvents that have a low (εs<15) dielectric constant and promote near to full ion association. Throughout this work it is demonstrated that liquid-liquid equilibrium calculations and solid-liquid equilibrium predictions for electrolyte systems can be markedly improved with the inclusion of Bjerrum treatment based phenomenological considerations while introducing only one general additional parameter. Our modified approach reinforces the capabilities of COSMO-RS-ES as a powerful predictive tool for the calculation of phase equilibria in systems with scarce experimental data.
Mon, 11 Nov 2019 12:49:00 GMThttp://hdl.handle.net/11420/37642019-11-11T12:49:00Z
- Physicochemical characterization and simulation of the solid-liquid equilibrium phase diagram of terpene-based eutectic solvent systemshttp://hdl.handle.net/11420/9199Title: Physicochemical characterization and simulation of the solid-liquid equilibrium phase diagram of terpene-based eutectic solvent systems
Authors: Abdallah, Maha M.; Müller, Simon; González de Castilla, Andrés; Gurikov, Pavel; Matias, Ana A.; Rosário Bronze, Maria do; Fernández, Naiara
Abstract: The characterization of terpene-based eutectic solvent systems is performed to describe their solid–liquid phase transitions. Physical properties are measured experimentally and compared to computed correlations for deep eutectic solvents (DES) and the percentage relative error <i>e</i><sub>r</sub> for the density, surface tension, and refractive index is obtained. The thermodynamic parameters, including the degradation, glass transition and crystallization temperatures, are measured using DSC and TGA. Based on these data, the solid–liquid equilibrium phase diagrams are calculated for the ideal case and predictions are made using the semi-predictive UNIFAC and the predictive COSMO RS models, the latter with two different parametrization levels. For each system, the ideal, experimental, and predicted eutectic points are obtained. The deviation from ideality is observed experimentally and using the thermodynamic models for Thymol:Borneol and Thymol:Camphor. In contrast, a negative deviation is observed only experimentally for Menthol:Borneol and Menthol:Camphor. Moreover, the chemical interactions are analyzed using FTIR and <sup>1</sup>H-NMR to study the intermolecular hydrogen bonding in the systems.; The characterization of terpene-based eutectic solvent systems is performed to describe their solid–liquid phase transitions. Physical properties are measured experimentally and compared to computed correlations for deep eutectic solvents (DES) and the percentage relative error er for the density, surface tension, and refractive index is obtained. The thermodynamic parameters, including the degradation, glass transition and crystallization temperatures, are measured using DSC and TGA. Based on these data, the solid–liquid equilibrium phase diagrams are calculated for the ideal case and predictions are made using the semi-predictive UNIFAC and the predictive COSMO RS models, the latter with two different parametrization levels. For each system, the ideal, experimental, and predicted eutectic points are obtained. The deviation from ideality is observed experimentally and using the thermodynamic models for Thymol:Borneol and Thymol:Camphor. In contrast, a negative deviation is observed only experimentally for Menthol:Borneol and Menthol:Camphor. Moreover, the chemical interactions are analyzed using FTIR and1H-NMR to study the intermolecular hydrogen bonding in the systems.
Tue, 06 Apr 2021 11:33:07 GMThttp://hdl.handle.net/11420/91992021-04-06T11:33:07Z