TUHH Open Research (TORE)https://tore.tuhh.deTORE captures, stores, indexes, preserves, and distributes digital research material.Fri, 09 Jun 2023 21:18:35 GMT2023-06-09T21:18:35Z5041On the decomposition of generalized semiautomatahttp://hdl.handle.net/11420/7859Title: On the decomposition of generalized semiautomata
Authors: Cakir, Merve Nur; Zimmermann, Karl-Heinz
Abstract: Semi-automata are abstractions of electronic devices that are deterministic finite-state machines having inputs but no outputs. Generalized semiautomata are obtained from stochastic semiautomata by dropping the restrictions imposed by probability. It is well-known that each stochastic semiautomaton can be decomposed into a sequential product of a dependent source and a deterministic semiautomaton making partly use of the celebrated theorem of Birkhoff-von Neumann. It will be shown that each generalized semiautomaton can be partitioned into a sequential product of a generalized dependent source and a deterministic semiautomaton.
Sun, 19 Apr 2020 00:00:00 GMThttp://hdl.handle.net/11420/78592020-04-19T00:00:00ZOn stochastic automata over monoidshttp://hdl.handle.net/11420/7860Title: On stochastic automata over monoids
Authors: Cakir, Merve Nur; Zimmermann, Karl-Heinz
Abstract: Stochastic automata over monoids as input sets are studied. The well-definedness of these automata requires an extension postulate that replaces the inherent universal property of free monoids. As a generalization of Turakainen's result, it will be shown that the generalized automata over monoids have the same acceptance power as their stochastic counterparts. The key to homomorphisms is a commuting property between the monoid homomorphism of input states and the monoid homomorphism of transition matrices. Closure properties of the languages accepted by stochastic automata over monoids are investigated. matrices. Closure properties of the languages accepted by stochastic automata over monoids are investigated.
Tue, 04 Feb 2020 00:00:00 GMThttp://hdl.handle.net/11420/78602020-02-04T00:00:00ZDynamic programming in topological spaceshttp://hdl.handle.net/11420/7857Title: Dynamic programming in topological spaces
Authors: Cakir, Merve Nur; Saleemi, Mehwish; Zimmermann, Karl-Heinz
Abstract: Dynamic programming is a mathematical optimization method and a computer programming method as well. In this paper, the notion of sheaf programming in topological spaces is introduced and it is demonstrated that it relates very well to the concept of dynamic programming.
Fri, 23 Oct 2020 00:00:00 GMThttp://hdl.handle.net/11420/78572020-10-23T00:00:00ZOn the Decomposition of Generalized Semiautomatahttp://hdl.handle.net/11420/12048Title: On the Decomposition of Generalized Semiautomata
Authors: Cakir, Merve Nur; Saleemi, Mehwish; Zimmermann, Karl-Heinz
Abstract: Semiautomata are abstractions of electronic devices that are deterministic finite-state machines having inputs but no outputs. Generalized semiautomata are obtained from stochastic semiautomata by dropping the restrictions imposed by probability. It is well-known that each stochastic semiautomaton can be decomposed into a sequential product of a dependent source and deterministic semiautomaton making partly use of the celebrated theorem of Birkhoff-von Neumann. It will be shown that each generalized semiautomaton can be partitioned into a sequential product of a generalized dependent source and a deterministic semiautomaton.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/11420/120482021-01-01T00:00:00Z