Allen, PeterPeterAllenBöttcher, JuliaJuliaBöttcherEhrenmüller, JuliaJuliaEhrenmüllerTaraz, AnuschAnuschTaraz2021-11-082021-11-082015-11-12Electronic Notes in Discrete Mathematics 49: 513-521 (2015-11)http://hdl.handle.net/11420/10812For each real γ>0 and integers δ≥2 and k≥1, we prove that there exist constants β>0 and C>0 such that for all p≥C(logn/n)1/δ the random graph G(n, p) asymptotically almost surely contains - even after an adversary deletes an arbitrary (1/k-γ)-fraction of the edges at every vertex - a copy of every n-vertex graph with maximum degree at most δ, bandwidth at most βn and at least Cmaxp-2, p-1logn vertices not in triangles.en1571-0653Electronic notes in discrete mathematics2015513521Elsevier ScienceExtremal graph theoryRandom graphsResilienceSparse regularityMathematikLocal resilience of spanning subgraphs in sparse random graphsJournal Article10.1016/j.endm.2015.06.071Other