Ārād, ṢevîṢevîĀrādBünger, FlorianFlorianBüngerFisman, E.E.FismanMuzychuk, MikhailMikhailMuzychuk2021-05-042021-05-042002Standard integral table algebras generated by a non-real element of small degree / Zvi Arad; Mikhail Muzychuk (eds.). - Berlin ; Heidelberg [u.a.] : Springer, 2002. - VII, 126 S. ; 24 cm ISBN 3-540-42851-8 kart. : DM 45.90 (Lecture notes in mathematics ; 1773). - Seite 43-81http://hdl.handle.net/11420/9429This chapter deals with the classification of standard integral GT-algebras (A,B) with L(B) = 1 {1} and |b| ≥ 4 for all b ∈ B# which contain a nonreal faithful basis element b of degree 5. Starting from this point using the basic identity λxyz|z|⟨xy,z⟩=⟨x,zy¯⟩=λzy¯x|x|,x,y,z∈B, one can list all possible representations of bb¯ and b 2 as linear combinations of basis elements (cf. Tables II and III of Subsection 3.3). Assuming that b commutes with b¯ yields the identity ⟨bb¯,bb¯⟩=⟨b2,b2⟩ which reduces the number of these representations (cf. Table III of Subsection 3.3). Then, using various kind of techniques (for example repeated application of the associa- tivity law), each of the reamining cases will be treated separately. In order to state the main result, we introduce the following base of a specific table algebra. © Springer-Verlag Berlin Heidelberg 2002enMathematikStandard integral table algebras with a faithful nonreal element of degree 5Book Part10.1007/3-540-45558-2_3Other