Manente André, NatáliaNatáliaManente AndréGoushegir, Seyed MohammadSeyed MohammadGoushegirSantos, Jorge F. dosJorge F. dosSantosCanto, Leonardo BrescianiLeonardo BrescianiCantoAmancio, SergioSergioAmancio2019-02-142019-02-142016-01-04Soldagem e Inspecao 1 (21): 2-15 (2016-01-01)https://tore.tuhh.de/handle/11420/2039Friction Spot Joining (FSpJ) is an innovative friction-based joining technique for metalpolymer hybrid structures. Friction spot joints of aluminum alloy 2024-T3 and carbon‑fiber reinforced poly(phenylene sulfide) composite laminate (CF-PPS) were produced with an additional PPS film interlayer. Two different film thicknesses were investigated in this study: 100 and 500 μm. Lap shear testing demonstrated that the joints produced with 100 μm film (2093 ± 180 N) were stronger than the joints with 500 μm (708 ± 69 N). Additionally, the fracture surface analysis revealed a larger bonding area for the joints with 100 μm film (53 ± 2 mm2) as compared to the joints with 500 μm film (40 ± 1 mm2). Considering the low thermal conductivity of PPS, the thinnest film is more likely to soften by the frictional heat during the joining process. Hence, the low viscosity of the molten PPS favors the wettability of the parts’ surface. Microstructural analyses proved that the metallic nub formation and the interdiffusion of PPS chains between film and composite matrix are also favored for thinner film use. Thus, superior adhesion between the partners is achieved. Therefore, it was concluded that the addition of the thinnest film interlayer leads to stronger joints.pt1980-6973Revista soldagem & inspeção20161215https://creativecommons.org/licenses/by-nc/4.0/União pontual por fricçãoEstruturas híbridasFilme intermediárioResistência mecânicaFriction spot joiningHybrid structuresFilm interlayerMechanical strengthTechnikInfluência da espessura do filme polimérico intermediário na resistência mecânica de juntas híbridas de alumínio 2024-T3 e CF-PPS produzidas por união pontual por fricçãoInfluence of the interlayer film thickness on the mechanical performance of AA2024-T3/CF-PPS hybrid joints produced by friction spot joiningJournal Articleurn:nbn:de:gbv:830-882.02684110.15480/882.203511420/203910.1590/0104-9224/SI2101.0210.15480/882.2035Other